Project description:ZCCHC9 is a human nuclear protein with sequence homology to yeast Air1p/Air2p proteins which are RNA-binding subunits of the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex involved in nuclear RNA quality control and degradation in yeast. The ZCCHC9 protein contains four retroviral-type zinc knuckle motifs. Here, we report the NMR spectral assignment of the zinc knuckle region of ZCCHC9. These data will allow performing NMR structural and RNA-binding studies of ZCCHC9 with the aim to investigate its role in the RNA quality control in human.
Project description:Cyclophilins are enzymes that catalyze the isomerization of a prolyl-peptide bond and are found in both prokaryotes and eukaryotes. LRT2 (also known as OsCYP2) is a cyclophilin in rice (Oryza sativa), that has importance in lateral root development and stress tolerance. LRT2 is 172 amino acids long and has a molecular weight of 18.3 kDa. Here, we report the backbone and sidechain resonance assignments of 1H, 13C, 15N in the LRT2 protein using several 2D and 3D heteronuclear NMR experiments at pH 6.7 and 298 K. Our chemical shift data analysis predicts a secondary structure like the cytosolic wheat cyclophilin TaCypA-1 with 87.7% sequence identity. These assignments will be useful for further analysis in the NMR studies for function and structure of this enzyme.
Project description:Ca(2+)-Calmodulin binding to the variable N-terminal region of the diacylglycerol/phorbol ester-binding UNC13/Munc13 family of proteins modulates the short-term synaptic plasticity characteristics in neurons. Here, we report the sequential backbone and side chain resonance assignment of the Ca(2+)-Calmodulin/Munc13-1(458-492) peptide complex at pH 6.8 and 35 degrees C (BMRB No. 15470).
Project description:Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of ?(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of ?(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.
Project description:The main protease (M(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. SARS-CoV M(pro) is composed of a catalytic N-terminal domain and an ?-helical C-terminal domain linked by a long loop. Even though the N-terminal domain of SARS-CoV M(pro) adopts a similar chymotrypsin-like fold as that of piconavirus 3C protease, the extra C-terminal domain is required for SARS-CoV M(pro) to be enzymatically active. Here, we reported the NMR assignments of the SARS-CoV M(pro) N-terminal domain alone, which are essential for its solution structure determination.
Project description:Backbone (1)H, (13)C and (15)N resonance assignments are presented for the extracellular domain of tissue factor. Tissue factor is the integral membrane protein that initiates blood coagulation through the formation an enzymatic complex with the plasma serine protease, factor VIIa.
Project description:The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKC? (Slater et al. J Biol Chem 272(10):6167-6173, 1997; Slater et al. Biochemistry 43(23):7601-7609, 2004), PKC? (Das et al. Biochem J 421(3):405-413, 2009) and PKC? (Das et al. J Biol Chem 279(36):37964-37972, 2004; Das et al. Protein Sci 15(9):2107-2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the (1)H, (15)N and (13)C NMR chemical shift assignments for the Rattus norvegicus PKC? C1A and C1B proteins.
Project description:Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins (Lee Archiv Pharm Res 33(2): 181-187, 2010), but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover (Eisenmesser et al. Science 295(5559): 1520-1523, 2002; Eisenmesser et al. Nature 438(7064): 117-121, 2005). Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment (Takami et al. Extremophiles 8(5): 351-356, 2004). This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.
Project description:The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments.