Herpes simplex virus-1 DNA primase: a remarkably inaccurate yet selective polymerase.
Ontology highlight
ABSTRACT: Herpes simplex virus-1 primase misincorporates the natural NTPs at frequencies of around one error per 30 NTPs polymerized, making it one of the least accurate polymerases known. We used a series of nucleotide analogues to further test the hypothesis that primase requires Watson-Crick hydrogen bond formation to efficiently polymerize a NTP. Primase could not generate base pairs containing a complete set of hydrogen bonds in an altered arrangement (isoguanine.isocytosine) and did not efficiently polymerize dNTPs completely incapable of forming Watson-Crick hydrogen bonds opposite templating bases incapable of forming Watson-Crick hydrogen bonds. Similarly, primase did not incorporate most NTPs containing hydrophobic bases incapable of Watson-Crick hydrogen bonding opposite natural template bases. However, 2-pyridone NTP and 4-methyl-2-pyridone NTP provided striking exceptions to this rule. The effects of removing single Watson-Crick hydrogen bonding groups from either the NTP or templating bases varied from almost no effect to completely blocking polymerization depending both on the parental base pair (G.C vs A.T/U) and which base pair of the growing primer (second, third, or fourth) was examined. Thus, primase does not absolutely need to form Watson-Crick hydrogen bonds to efficiently polymerize a NTP. Additionally, we found that herpes primase can misincorporate nucleotides both by misreading the template and by a primer-template slippage mechanism. The mechanistic and biological implications of these results are discussed.
SUBMITTER: Urban M
PROVIDER: S-EPMC2784104 | biostudies-literature | 2009 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA