Ontology highlight
ABSTRACT: Background
Hypoxia-inducible factor 1 (HIF-1) plays a key role in cellular adaptation to hypoxia. To better understand the determinants of HIF-1 binding and transactivation, we used ChIP-chip and gene expression profiling to define the relationship between the epigenetic landscape, sites of HIF-1 binding, and genes transactivated by hypoxia in two cell lines.Results
We found that when cells were acutely subjected to hypoxia, HIF-1 preferentially bound to loci that were already transcriptionally active under normal growth conditions characterized by the presence of histone H3 lysine 4 methylation, the presence of RNA polymerase II, and basal production of mRNA. Cell type-specific differences in HIF-1 binding were largely attributable to differences in the basal gene expression patterns in the cells prior to the onset of hypoxia.Conclusions
These results suggest that the repertoire of genes active in a cell (for example, through lineage specific transcription factors) defines the subset of genes that are permissive for binding and transactivation by stimulus-responsive transcription factors.
SUBMITTER: Xia X
PROVIDER: S-EPMC2784328 | biostudies-literature | 2009
REPOSITORIES: biostudies-literature
Genome biology 20091014 10
<h4>Background</h4>Hypoxia-inducible factor 1 (HIF-1) plays a key role in cellular adaptation to hypoxia. To better understand the determinants of HIF-1 binding and transactivation, we used ChIP-chip and gene expression profiling to define the relationship between the epigenetic landscape, sites of HIF-1 binding, and genes transactivated by hypoxia in two cell lines.<h4>Results</h4>We found that when cells were acutely subjected to hypoxia, HIF-1 preferentially bound to loci that were already tr ...[more]