Unknown

Dataset Information

0

Tension at the surface: which phase is more important, liquid or vapor?


ABSTRACT: Tension at the surface is a most fundamental physicochemical property of a liquid surface. The concept of surface tension has widespread implications in numerous natural, engineering and biomedical processes. Research to date has been largely focused on the liquid side; little attention has been paid to the vapor--the other side of the surface, despite over 100 years of study. However, the question remains as to whether the vapor plays any role, and to what extent it affects the surface tension of the liquid. Here we show a systematic study of the effect of vapor on the surface tension and in particular, a surprising observation that the vapor, not the liquid, plays a dominant role in determining the surface tension of a range of common volatile organic solutions. This is in stark contrast to results of common surfactants where the concentration in the liquid plays the major role. We further confirmed our results with a modified adsorption isotherm and molecular dynamics simulations, where highly structured, hydrogen bonded networks, and in particular a solute depletion layer just beneath the Gibbs dividing surface, were revealed.

SUBMITTER: Prpich AM 

PROVIDER: S-EPMC2788621 | biostudies-literature | 2009 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tension at the surface: which phase is more important, liquid or vapor?

Prpich Andrew M AM   Sheng Yuebiao Y   Wang Wei W   Biswas M Elias ME   Chen P P  

PloS one 20091214 12


Tension at the surface is a most fundamental physicochemical property of a liquid surface. The concept of surface tension has widespread implications in numerous natural, engineering and biomedical processes. Research to date has been largely focused on the liquid side; little attention has been paid to the vapor--the other side of the surface, despite over 100 years of study. However, the question remains as to whether the vapor plays any role, and to what extent it affects the surface tension  ...[more]

Similar Datasets

| S-EPMC9429979 | biostudies-literature
| S-EPMC8244105 | biostudies-literature
| S-EPMC6728126 | biostudies-literature
| S-EPMC7998689 | biostudies-literature
| S-EPMC7692703 | biostudies-literature
| S-EPMC4768306 | biostudies-literature
| S-EPMC6641640 | biostudies-literature
| S-EPMC7240524 | biostudies-literature
| S-EPMC8388096 | biostudies-literature
| S-EPMC3684806 | biostudies-other