Using lifetime risk estimates in personal genomic profiles: estimation of uncertainty.
Ontology highlight
ABSTRACT: Personal genome tests are now offered direct-to-consumer (DTC) via genetic variants identified by genome-wide association studies (GWAS) for common diseases. Tests report risk estimates (age-specific and lifetime) for various diseases based on genotypes at multiple loci. However, uncertainty surrounding such risk estimates has not been systematically investigated. With breast cancer as an example, we examined the combined effect of uncertainties in population incidence rates, genotype frequency, effect sizes, and models of joint effects among genetic variants on lifetime risk estimates. We performed simulations to estimate lifetime breast cancer risk for carriers and noncarriers of genetic variants. We derived population-based cancer incidence rates from Surveillance, Epidemiology, and End Results (SEER) Program and comparative international data. We used data for non-Hispanic white women from 2003 to 2005. We derived genotype frequencies and effect sizes from published GWAS and meta-analyses. For a single genetic variant in FGFR2 gene (rs2981582), combination of uncertainty in these parameters produced risk estimates where upper and lower 95% simulation intervals differed by more than 3-fold. Difference in population incidence rates was the largest contributor to variation in risk estimates. For a panel of five genetic variants, estimated lifetime risk of developing breast cancer before age 80 for a woman that carried all risk variants ranged from 6.1% to 21%, depending on assumptions of additive or multiplicative joint effects and breast cancer incidence rates. Epidemiologic parameters involved in computation of disease risk have substantial uncertainty, and cumulative uncertainty should be properly recognized. Reliance on point estimates alone could be seriously misleading.
SUBMITTER: Yang Q
PROVIDER: S-EPMC2790579 | biostudies-literature | 2009 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA