Unknown

Dataset Information

0

Free energy perturbation (FEP) simulation on the transition states of cocaine hydrolysis catalyzed by human butyrylcholinesterase and its mutants.


ABSTRACT: A novel computational protocol based on free energy perturbation (FEP) simulations on both the free enzyme and transition state structures has been developed and tested to predict the mutation-caused shift of the free energy change from the free enzyme to the rate-determining transition state for human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The calculated shift, denoted by DeltaDeltaG(1 --> 2), of such kind of free energy change determines the catalytic efficiency (kcat/KM) change caused by the simulated mutation transforming enzyme 1 to enzyme 2. By using the FEP-based computational protocol, the DeltaDeltaG(1 --> 2) values for the mutations A328W/Y332A --> A328W/Y332G and A328W/Y332G --> A328W/Y332G/A199S were calculated to be -0.22 and -1.94 kcal/mol, respectively. The calculated DeltaDeltaG(1 --> 2) values predict that the change from the A328W/Y332A mutant to the A328W/Y332G mutant should slightly improve the catalytic efficiency and that the change from the A328W/Y332G mutant to the A328W/Y332G/A199S mutant should significantly improve the catalytic efficiency of the enzyme for the (-)-cocaine hydrolysis. The predicted catalytic efficiency increases are supported by the experimental data showing that kcat/KM = 8.5 x 10(6), 1.4 x 10(7), and 7.2 x 10(7) min(-1) M(-1) for the A328W/Y332A, A328W/Y332G, and A328W/Y332G/A199S mutants, respectively. The qualitative agreement between the computational and experimental data suggests that the FEP simulations may provide a promising protocol for rational design of high-activity mutants of an enzyme. The general computational strategy of the FEP simulation on a transition state can be used to study the effects of a mutation on the activation free energy for any enzymatic reaction.

SUBMITTER: Pan Y 

PROVIDER: S-EPMC2792569 | biostudies-literature | 2007 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Free energy perturbation (FEP) simulation on the transition states of cocaine hydrolysis catalyzed by human butyrylcholinesterase and its mutants.

Pan Yongmei Y   Gao Daquan D   Yang Wenchao W   Cho Hoon H   Zhan Chang-Guo CG  

Journal of the American Chemical Society 20071010 44


A novel computational protocol based on free energy perturbation (FEP) simulations on both the free enzyme and transition state structures has been developed and tested to predict the mutation-caused shift of the free energy change from the free enzyme to the rate-determining transition state for human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The calculated shift, denoted by DeltaDeltaG(1 --> 2), of such kind of free energy change determines the catalytic efficiency (kca  ...[more]

Similar Datasets

| S-EPMC2930763 | biostudies-literature
| S-EPMC1366953 | biostudies-literature
| S-EPMC2717303 | biostudies-literature
| S-EPMC2882242 | biostudies-literature
| S-EPMC2882100 | biostudies-literature
| S-EPMC3033463 | biostudies-literature
| S-EPMC3812942 | biostudies-literature
| S-EPMC2738781 | biostudies-literature
| S-EPMC2893393 | biostudies-literature
| S-EPMC2963084 | biostudies-literature