Unknown

Dataset Information

0

Disentangling direct from indirect co-evolution of residues in protein alignments.


ABSTRACT: Predicting protein structure from primary sequence is one of the ultimate challenges in computational biology. Given the large amount of available sequence data, the analysis of co-evolution, i.e., statistical dependency, between columns in multiple alignments of protein domain sequences remains one of the most promising avenues for predicting residues that are contacting in the structure. A key impediment to this approach is that strong statistical dependencies are also observed for many residue pairs that are distal in the structure. Using a comprehensive analysis of protein domains with available three-dimensional structures we show that co-evolving contacts very commonly form chains that percolate through the protein structure, inducing indirect statistical dependencies between many distal pairs of residues. We characterize the distributions of length and spatial distance traveled by these co-evolving contact chains and show that they explain a large fraction of observed statistical dependencies between structurally distal pairs. We adapt a recently developed Bayesian network model into a rigorous procedure for disentangling direct from indirect statistical dependencies, and we demonstrate that this method not only successfully accomplishes this task, but also allows contacts with weak statistical dependency to be detected. To illustrate how additional information can be incorporated into our method, we incorporate a phylogenetic correction, and we develop an informative prior that takes into account that the probability for a pair of residues to contact depends strongly on their primary-sequence distance and the amount of conservation that the corresponding columns in the multiple alignment exhibit. We show that our model including these extensions dramatically improves the accuracy of contact prediction from multiple sequence alignments.

SUBMITTER: Burger L 

PROVIDER: S-EPMC2793430 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disentangling direct from indirect co-evolution of residues in protein alignments.

Burger Lukas L   van Nimwegen Erik E  

PLoS computational biology 20100101 1


Predicting protein structure from primary sequence is one of the ultimate challenges in computational biology. Given the large amount of available sequence data, the analysis of co-evolution, i.e., statistical dependency, between columns in multiple alignments of protein domain sequences remains one of the most promising avenues for predicting residues that are contacting in the structure. A key impediment to this approach is that strong statistical dependencies are also observed for many residu  ...[more]

Similar Datasets

| S-EPMC8764688 | biostudies-literature
| S-EPMC6195560 | biostudies-literature
| S-EPMC3159429 | biostudies-literature
| S-EPMC7894530 | biostudies-literature
| S-EPMC6221879 | biostudies-literature
| S-EPMC3945068 | biostudies-literature
2013-11-23 | E-GEOD-52655 | biostudies-arrayexpress
| S-EPMC8647716 | biostudies-literature
2013-11-23 | GSE52655 | GEO
| S-EPMC2556093 | biostudies-literature