Inhibition of oxygen-induced hypoxia-inducible factor-1alpha degradation unmasks estradiol induction of vascular endothelial growth factor expression in ECC-1 cancer cells in vitro.
Ontology highlight
ABSTRACT: Estradiol (E(2)) rapidly and strongly induces vascular endothelial growth factor (VEGF) transcription in uterine endometrial epithelial cells in vivo. We have shown that this is mediated by both the estrogen receptor-alpha and hypoxia-inducible factor (HIF)-1alpha. By contrast, E(2) induces little or no VEGF expression in cultured breast or endometrial cancer cells, which lack HIF-1alpha due to the abnormally high concentration of oxygen ( approximately 20%) to which they are exposed. To test the hypothesis that restoring HIF-1alpha in cultured cells would restore the ability of E(2) to induce VEGF expression, we treated human endometrial cancer cells (ECC-1) with cobalt chloride (CoCl(2);100 microm), which prevents oxygen-induced HIF-1alpha degradation. HIF-1alpha was absent in untreated ECC-1 cells but detectable by 4 h after treatment with CoCl(2) alone, as was a significant increase in VEGF mRNA. E(2) plus CoCl(2) induced detectable HIF-1alpha expression at 2 h and an even higher level than that induced by CoCl(2) alone at 4 h; this HIF-1alpha was localized in the nuclei. This was accompanied by increasing VEGF expression, with the increase at 4 h severalfold higher than that induced by CoCl(2) alone and was concurrent with recruitment of both HIF-1alpha and estrogen receptor-alpha to the VEGF promoter. These results confirm that HIF-1alpha plays an essential role in E(2)-induced expression of VEGF. Through the induction of increased microvascular permeability and the consequent exudation of plasma growth factors, VEGF in turn may play an essential role in cancer cell proliferation in vivo.
SUBMITTER: Molitoris KH
PROVIDER: S-EPMC2795708 | biostudies-literature | 2009 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA