Unknown

Dataset Information

0

Development of a three dimensional multiscale computational model of the human epidermis.


ABSTRACT: Transforming Growth Factor (TGF-beta1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-beta1 behaviour and no one model provides a comprehensive story of this regulatory factor's action. Accordingly our aim was to develop a computational model to act as a complementary approach to improve our understanding of TGF-beta1. In our previous study, an agent-based model of keratinocyte colony formation in 2D culture was developed. In this study this model was extensively developed into a three dimensional multiscale model of the human epidermis which is comprised of three interacting and integrated layers: (1) an agent-based model which captures the biological rules governing the cells in the human epidermis at the cellular level and includes the rules for injury induced emergent behaviours, (2) a COmplex PAthway SImulator (COPASI) model which simulates the expression and signalling of TGF-beta1 at the sub-cellular level and (3) a mechanical layer embodied by a numerical physical solver responsible for resolving the forces exerted between cells at the multi-cellular level. The integrated model was initially validated by using it to grow a piece of virtual epidermis in 3D and comparing the in virtuo simulations of keratinocyte behaviour and of TGF-beta1 signalling with the extensive research literature describing this key regulatory protein. This research reinforces the idea that computational modelling can be an effective additional tool to aid our understanding of complex systems. In the accompanying paper the model is used to explore hypotheses of the functions of TGF-beta1 at the cellular and subcellular level on different keratinocyte populations during epidermal wound healing.

SUBMITTER: Adra S 

PROVIDER: S-EPMC2799518 | biostudies-literature | 2010

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of a three dimensional multiscale computational model of the human epidermis.

Adra Salem S   Sun Tao T   MacNeil Sheila S   Holcombe Mike M   Smallwood Rod R  

PloS one 20100114 1


Transforming Growth Factor (TGF-beta1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-beta1 behaviour and no one model provides a comprehensive story of  ...[more]

Similar Datasets

| S-EPMC5510681 | biostudies-literature
| S-EPMC2796169 | biostudies-literature
| S-EPMC6936042 | biostudies-literature
| S-EPMC4227658 | biostudies-literature
| S-EPMC4669814 | biostudies-literature
| S-EPMC3460983 | biostudies-other
| S-EPMC3392240 | biostudies-literature
| S-EPMC6366157 | biostudies-literature
| S-EPMC8697684 | biostudies-literature
| S-EPMC7224566 | biostudies-literature