Retrograde neurotrophic signaling requires a protein interacting with receptor tyrosine kinases via C2H2 zinc fingers.
Ontology highlight
ABSTRACT: Neurotrophins at axonal terminals signal to cell bodies to regulate neuronal development via signaling endosomes containing activated Trk receptor tyrosine kinases and mitogen-activated protein kinases (MAPKs). Requirements for the formation of signaling endosomes remain, however, poorly characterized. Here we show that a novel Trk-interacting protein, NTRAP (neurotrophic factor receptor-associated protein), plays a crucial role in this signaling process. NTRAP interacts with the Trk intracellular domain through its C(2)H(2) zinc fingers in a kinase-dependent manner. It is associated with vesicles, some of which contain markers for signaling endosomes. Inhibition of NTRAP function suppresses neurotrophin-induced neurite outgrowth in PC12 cells by altering TrkA endocytic traffic, inhibiting the formation of endosomes containing persistently active MAPKs. In compartmentalized sensory neuron cultures, down-regulation of NTRAP abolishes the ability of neurotrophins applied to distal axons to activate the transcription factor adenosine 3',5'-monophosphate response element-binding protein (CREB) and to promote neuronal survival. We propose that NTRAP regulates retrograde neurotrophic signaling by controlling the formation of signaling endosomes.
SUBMITTER: Fu X
PROVIDER: S-EPMC2801717 | biostudies-literature | 2010 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA