Unknown

Dataset Information

0

Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes.


ABSTRACT: Calmodulin (CaM) regulates Na+ channel gating through binding to an IQ-like motif in the C-terminus. Ca2+/CaM-dependent protein kinase II (CaMKII) regulates Ca2+ handling, and chronic overactivity of CaMKII is associated with left ventricular hypertrophy and dysfunction and lethal arrhythmias. However, the acute effects of Ca2+/CaM and CaMKII on cardiac Na+ channels are not fully understood.Purified Na(V)1.5-glutathione-S-transferase fusion peptides were phosphorylated in vitro by CaMKII predominantly on the I-II linker. Whole-cell voltage-clamp was used to measure Na+ current (I(Na)) in isolated guinea-pig ventricular myocytes in the absence or presence of CaM or CaMKII in the pipette solution. CaMKII shifted the voltage dependence of Na+ channel availability by approximately +5 mV, hastened recovery from inactivation, decreased entry into intermediate or slow inactivation, and increased persistent (late) current, but did not change I(Na) decay. These CaMKII-induced changes of Na+ channel gating were completely abolished by a specific CaMKII inhibitor, autocamtide-2-related inhibitory peptide (AIP). Ca2+/CaM alone reproduced the CaMKII-induced changes of I(Na) availability and the fraction of channels undergoing slow inactivation, but did not alter recovery from inactivation or the magnitude of the late current. Furthermore, the CaM-induced changes were also completely abolished by AIP. On the other hand, cAMP-dependent protein kinase A inhibitors did not abolish the CaM/CaMKII-induced alterations of I(Na) function.Ca2+/CaM and CaMKII have distinct effects on the inactivation phenotype of cardiac Na+ channels. The differences are consistent with CaM-independent effects of CaMKII on cardiac Na+ channel gating.

SUBMITTER: Aiba T 

PROVIDER: S-EPMC2802203 | biostudies-literature | 2010 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes.

Aiba Takeshi T   Hesketh Geoffrey G GG   Liu Ting T   Carlisle Rachael R   Villa-Abrille Maria Celeste MC   O'Rourke Brian B   Akar Fadi G FG   Tomaselli Gordon F GF  

Cardiovascular research 20091001 3


<h4>Aims</h4>Calmodulin (CaM) regulates Na+ channel gating through binding to an IQ-like motif in the C-terminus. Ca2+/CaM-dependent protein kinase II (CaMKII) regulates Ca2+ handling, and chronic overactivity of CaMKII is associated with left ventricular hypertrophy and dysfunction and lethal arrhythmias. However, the acute effects of Ca2+/CaM and CaMKII on cardiac Na+ channels are not fully understood.<h4>Methods and results</h4>Purified Na(V)1.5-glutathione-S-transferase fusion peptides were  ...[more]

Similar Datasets

| S-EPMC3811023 | biostudies-literature
| S-EPMC1573359 | biostudies-other
| S-EPMC2581591 | biostudies-literature
| S-EPMC1166620 | biostudies-literature
| S-EPMC2189832 | biostudies-other
| S-EPMC4002279 | biostudies-other
| S-EPMC7274838 | biostudies-literature
| S-EPMC2883657 | biostudies-literature
| S-EPMC2820514 | biostudies-literature
| S-EPMC4219273 | biostudies-literature