Project description:The objective of this study was to investigate the relationship between gene expression of nutrient (amino acid, peptide, sodium and proton) transporters in the small intestine and embryonic growth in domestic pigeons (Columba livia). One hundred and twenty-five fertilized eggs were randomly assigned into five groups and were incubated under optimal conditions (temperature of 38.1 °C and relative humidity of 55%). Twenty embryos/birds from each group were sacrificed by cervical dislocation on embryonic day (E) 9, 11, 13, 15 and day of hatch (DOH). The eggs, embryos (without yolk sac), and organs (head, brain, heart, liver, lungs, kidney, gizzard, small intestine, legs, and thorax) were dissected, cleaned, and weighed. Small intestine samples were collected for RNA isolation. The mRNA abundance of intestinal nutrient transporters was evaluated by real-time reverse transcription-polymerase chain reaction (RT-PCR). We classified these ten organs into four types according to the changes in relative weight during embryonic development. In addition, the gene expression of nutrient transporters was differentially regulated by embryonic day. The mRNA abundances of b(0,+)AT, EAAT3, y(+)LAT2, PepT1, LAT4, NHE2, and NHE3 increased linearly with age, whereas mRNA abundances of CAT1, CAT2, LAT1, EAAT2, SNAT1, and SNAT2 were increased to higher levels on E9 or E11 and then decreased to lower levels until DOH. The results of correlation analysis showed that the gene expressions of b(0,+)AT, EAAT3, PepT1, LAT4, NHE2, NHE3, and y(+)LAT2 had positive correlations with body weight (0.71<correlation coefficient (CC)<0.82, P<0.0001), while CAT1, CAT2, EAAT2, SNAT1, and SNAT2 had negative correlations with body weight (-0.86<CC<-0.64, P<0.0001). The gene expressions of b(0,+)AT, EAAT3, LAT4, PepT1, NHE2, NHE3, and y(+)LAT2 showed positive correlations with intestinal weight (0.80<CC<0.91, P<0.0001), while CAT1, CAT2, and EAAT2 showed negative correlations with intestinal weight (-0.84<CC<-0.67, P<0.0001). It was concluded that the differences between growth trajectories of organs and gene expression of nutrient transporters in small intestine were due to their functional and physiological properties, which provided a comprehensive study of amino acid and peptide transporter mRNA in the small intestine during embryonic growth of pigeons.
| S-EPMC4471603 | biostudies-literature