Unknown

Dataset Information

0

Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design.


ABSTRACT: The need to develop beta-lactamase inhibitors against class C cephalosporinases of Gram-negative pathogens represents an urgent clinical priority. To respond to this challenge, five boronic acid derivatives, including a new cefoperazone analogue, were synthesized and tested against the class C cephalosporinase of Acinetobacter baumannii [Acinetobacter-derived cephalosporinase (ADC)]. The commercially available carbapenem antibiotics were also assayed. In the boronic acid series, a chiral cephalothin analogue with a meta-carboxyphenyl moiety corresponding to the C(3)/C(4) carboxylate of beta-lactams showed the lowest K(i) (11 +/- 1 nM). In antimicrobial susceptibility tests, this cephalothin analogue lowered the ceftazidime and cefotaxime minimum inhibitory concentrations (MICs) of Escherichia coli DH10B cells carrying bla(ADC) from 16 to 4 microg/mL and from 8 to 1 microg/mL, respectively. On the other hand, each carbapenem exhibited a K(i) of <20 microM, and timed electrospray ionization mass spectrometry (ESI-MS) demonstrated the formation of adducts corresponding to acyl-enzyme intermediates with both intact carbapenem and carbapenem lacking the C(6) hydroxyethyl group. To improve our understanding of the interactions between the beta-lactamase and the inhibitors, we constructed models of ADC as an acyl-enzyme intermediate with (i) the meta-carboxyphenyl cephalothin analogue and (ii) the carbapenems, imipenem and meropenem. Our first model suggests that this chiral cephalothin analogue adopts a novel conformation in the beta-lactamase active site. Further, the addition of the substituent mimicking the cephalosporin dihydrothiazine ring may significantly improve affinity for the ADC beta-lactamase. In contrast, the ADC-carbapenem models offer a novel role for the R(2) side group and also suggest that elimination of the C(6) hydroxyethyl group by retroaldolic reaction leads to a significant conformational change in the acyl-enzyme intermediate. Lessons from the diverse mechanisms and structures of the boronic acid derivatives and carbapenems provide insights for the development of new beta-lactamase inhibitors against these critical drug resistance targets.

SUBMITTER: Drawz SM 

PROVIDER: S-EPMC2810401 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design.

Drawz Sarah M SM   Babic Maja M   Bethel Christopher R CR   Taracila Magda M   Distler Anne M AM   Ori Claudia C   Caselli Emilia E   Prati Fabio F   Bonomo Robert A RA  

Biochemistry 20100101 2


The need to develop beta-lactamase inhibitors against class C cephalosporinases of Gram-negative pathogens represents an urgent clinical priority. To respond to this challenge, five boronic acid derivatives, including a new cefoperazone analogue, were synthesized and tested against the class C cephalosporinase of Acinetobacter baumannii [Acinetobacter-derived cephalosporinase (ADC)]. The commercially available carbapenem antibiotics were also assayed. In the boronic acid series, a chiral cephalo  ...[more]

Similar Datasets

| S-EPMC5655052 | biostudies-literature
| S-EPMC3910822 | biostudies-literature
| S-EPMC2786334 | biostudies-literature
| S-EPMC2812178 | biostudies-literature
| S-EPMC6761529 | biostudies-literature
| S-EPMC2613614 | biostudies-literature
| S-EPMC2981293 | biostudies-literature
| S-EPMC3949520 | biostudies-literature
| S-EPMC1891420 | biostudies-literature
| S-EPMC4325782 | biostudies-literature