Unknown

Dataset Information

0

Conformation dependence of backbone geometry in proteins.


ABSTRACT: Protein structure determination and predictive modeling have long been guided by the paradigm that the peptide backbone has a single, context-independent ideal geometry. Both quantum-mechanics calculations and empirical analyses have shown this is an incorrect simplification in that backbone covalent geometry actually varies systematically as a function of the phi and Psi backbone dihedral angles. Here, we use a nonredundant set of ultrahigh-resolution protein structures to define these conformation-dependent variations. The trends have a rational, structural basis that can be explained by avoidance of atomic clashes or optimization of favorable electrostatic interactions. To facilitate adoption of this paradigm, we have created a conformation-dependent library of covalent bond lengths and bond angles and shown that it has improved accuracy over existing methods without any additional variables to optimize. Protein structures derived from crystallographic refinement and predictive modeling both stand to benefit from incorporation of the paradigm.

SUBMITTER: Berkholz DS 

PROVIDER: S-EPMC2810841 | biostudies-literature | 2009 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Conformation dependence of backbone geometry in proteins.

Berkholz Donald S DS   Shapovalov Maxim V MV   Dunbrack Roland L RL   Karplus P Andrew PA  

Structure (London, England : 1993) 20091001 10


Protein structure determination and predictive modeling have long been guided by the paradigm that the peptide backbone has a single, context-independent ideal geometry. Both quantum-mechanics calculations and empirical analyses have shown this is an incorrect simplification in that backbone covalent geometry actually varies systematically as a function of the phi and Psi backbone dihedral angles. Here, we use a nonredundant set of ultrahigh-resolution protein structures to define these conforma  ...[more]

Similar Datasets

| S-EPMC4169323 | biostudies-literature
| S-EPMC7869903 | biostudies-literature
| S-EPMC2143451 | biostudies-other
| S-EPMC3831682 | biostudies-literature
| S-EPMC2808862 | biostudies-literature
| S-EPMC3892298 | biostudies-literature
| S-EPMC1283474 | biostudies-literature
| S-EPMC8136669 | biostudies-literature
| S-EPMC2553103 | biostudies-literature
| S-EPMC5733691 | biostudies-literature