Unknown

Dataset Information

0

Purification and protective efficacy of monomeric and modified Yersinia pestis capsular F1-V antigen fusion proteins for vaccination against plague.


ABSTRACT: The F1-V vaccine antigen, protective against Yersinia pestis, exhibits a strong tendency to multimerize that affects larger-scale manufacture and characterization. In this work, the sole F1-V cysteine was replaced with serine by site-directed mutagenesis for characterization of F1-V non-covalent multimer interactions and protective potency without participation by disulfide-linkages. F1-V and F1-V(C424S) proteins were overexpressed in Escherichia coli, recovered using mechanical lysis/pH-modulation and purified from urea-solubilized soft inclusion bodies, using successive ion-exchange, ceramic hydroxyapatite, and size-exclusion chromatography. This purification method resulted in up to 2mg/g of cell paste of 95% pure, mono-disperse protein having < or =0.5 endotoxin units per mg by a kinetic chromogenic limulus amoebocyte lysate reactivity assay. Both F1-V and F1-V(C424S) were monomeric at pH 10.0 and progressively self-associated as pH conditions decreased to pH 6.0. Solution additives were screened for their ability to inhibit F1-V self-association at pH 6.5. An L-arginine buffer provided the greatest stabilizing effect. Conversion to >500-kDa multimers occurred between pH 6.0 and 5.0. Conditions for efficient F1-V adsorption to the cGMP-compatible alhydrogel adjuvant were optimized. Side-by-side evaluation for protective potency against subcutaneous plague infection in mice was conducted for F1-V(C424S) monomer; cysteine-capped F1-V monomer; cysteine-capped F1-V multimer; and a F1-V standard reported previously. After a two-dose vaccination with 2 x 20 microg of F1-V, respectively, 100%, 80%, 80%, and 70% of injected mice survived a subcutaneous lethal plague challenge with 10(8) LD(50)Y. pestis CO92. Thus, vaccination with F1-V monomer and multimeric forms resulted in significant, and essentially equivalent, protection.

SUBMITTER: Goodin JL 

PROVIDER: S-EPMC2811967 | biostudies-literature | 2007 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Purification and protective efficacy of monomeric and modified Yersinia pestis capsular F1-V antigen fusion proteins for vaccination against plague.

Goodin Jeremy L JL   Nellis David F DF   Powell Bradford S BS   Vyas Vinay V VV   Enama Jeffrey T JT   Wang Lena C LC   Clark Patrick K PK   Giardina Steven L SL   Adamovicz Jeffery J JJ   Michiel Dennis F DF  

Protein expression and purification 20061231 1


The F1-V vaccine antigen, protective against Yersinia pestis, exhibits a strong tendency to multimerize that affects larger-scale manufacture and characterization. In this work, the sole F1-V cysteine was replaced with serine by site-directed mutagenesis for characterization of F1-V non-covalent multimer interactions and protective potency without participation by disulfide-linkages. F1-V and F1-V(C424S) proteins were overexpressed in Escherichia coli, recovered using mechanical lysis/pH-modulat  ...[more]

Similar Datasets

| S-EPMC6195588 | biostudies-literature
| S-EPMC143422 | biostudies-literature
| S-EPMC4578216 | biostudies-literature
| S-EPMC5214965 | biostudies-literature
| S-EPMC172914 | biostudies-other
| S-EPMC3708895 | biostudies-literature
| S-EPMC7920731 | biostudies-literature
| S-EPMC8470410 | biostudies-literature
| S-EPMC3320270 | biostudies-literature
| S-EPMC2725862 | biostudies-literature