Unknown

Dataset Information

0

BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus.


ABSTRACT: In ectodermal explants from Xenopus embryos, inhibition of BMP signaling is sufficient for neural induction, leading to the idea that neural fate is the default state in the ectoderm. Many of these experiments assayed the action of BMP antagonists on animal caps, which are relatively naïve explants of prospective ectoderm, and different results have led to debate regarding both the mechanism of neural induction and the appropriateness of animal caps as an assay system. Here we address whether BMP antagonists are only able to induce neural fates in pre-patterned explants, and the extent to which neural induction requires FGF signaling. We suggest that some discrepancies in conclusion depend on the interpretations of sox gene expression, which we show not only marks definitive neural tissue, but also tissue that is not yet committed to neural fates. Part of the early sox2 domain requires FGF signaling, but in the absence of organizer signaling, this domain reverts to epidermal fates. We also reinforce the evidence that ectodermal explants are naïve, and that explants that lack any dorsal prepattern are readily neuralized by BMP antagonists, even when FGF signaling is inhibited.

SUBMITTER: Wills AE 

PROVIDER: S-EPMC2812634 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus.

Wills Andrea E AE   Choi Vivian M VM   Bennett Margaux J MJ   Khokha Mustafa K MK   Harland Richard M RM  

Developmental biology 20091110 2


In ectodermal explants from Xenopus embryos, inhibition of BMP signaling is sufficient for neural induction, leading to the idea that neural fate is the default state in the ectoderm. Many of these experiments assayed the action of BMP antagonists on animal caps, which are relatively naïve explants of prospective ectoderm, and different results have led to debate regarding both the mechanism of neural induction and the appropriateness of animal caps as an assay system. Here we address whether BM  ...[more]

Similar Datasets

| S-EPMC1994590 | biostudies-literature
| S-EPMC2211421 | biostudies-literature
| S-EPMC2765096 | biostudies-literature
| S-EPMC2789263 | biostudies-literature
| S-EPMC4851347 | biostudies-literature
| S-EPMC2749967 | biostudies-literature
| S-EPMC7642414 | biostudies-literature
| S-EPMC3052773 | biostudies-literature
| S-EPMC3271986 | biostudies-literature
| S-EPMC3442785 | biostudies-literature