Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage.
Ontology highlight
ABSTRACT: Platelet aggregates are present in parenchymal vessels as early as 10 min after experimental subarachnoid hemorrhage (SAH). Structural injury to parenchymal vessel walls and depletion of collagen-IV (the major protein of basal lamina) occur in a similar time frame. Since platelets upon activation release enzymes which can digest collagen-IV, we investigated the topographic relationship between platelet aggregates, endothelium, and basal lamina after SAH produced by endovascular perforation, using triple immunofluorescence and confocal microscopy with deconvolution. The location of platelet aggregates in relation to zymography-detected active collagenase was also examined. As reported previously, most cerebral vessels profiles contained platelets aggregates at 10 min after SAH. High-resolution three-dimensional image analysis placed many platelets at the ab-luminal (basal) side of endothelium at 10 min, and others either within the vascular basal lamina or in nearby parenchyma. By 24 h post hemorrhage, large numbers of platelets had entered the brain parenchyma. The vascular sites of platelet movement were devoid of endothelium and collagen-IV. Collagenase activity colocalized with vascular platelet aggregates. Our data demonstrate that parenchymal entry of platelets into brain parenchyma begins within minutes after hemorrhage. Three-dimensional analysis suggests that platelet aggregates initiate or stimulate local disruption of endothelium and destruction of adjacent basal lamina after SAH.
SUBMITTER: Friedrich V
PROVIDER: S-EPMC2814884 | biostudies-literature | 2010 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA