Unknown

Dataset Information

0

Manual rat sleep classification in principal component space.


ABSTRACT: A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall inter-rater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about 5 min for classification of each 24-h recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research.

SUBMITTER: Gilmour TP 

PROVIDER: S-EPMC2815242 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Manual rat sleep classification in principal component space.

Gilmour Timothy P TP   Fang Jidong J   Guan Zhiwei Z   Subramanian Thyagarajan T  

Neuroscience letters 20091126 1


A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h r  ...[more]

Similar Datasets

| S-EPMC3947083 | biostudies-literature
2011-08-15 | GSE31375 | GEO
| S-EPMC5515900 | biostudies-other
| S-EPMC9813324 | biostudies-literature
| S-EPMC5793493 | biostudies-literature
| S-EPMC4534136 | biostudies-literature
| S-EPMC8400772 | biostudies-literature
| S-EPMC4383722 | biostudies-literature
| S-EPMC4721272 | biostudies-literature
| S-EPMC3131008 | biostudies-literature