Unknown

Dataset Information

0

Controlling Affinity Binding with Peptide-Functionalized Poly(ethylene glycol) Hydrogels.


ABSTRACT: Poly(ethylene glycol) (PEG) hydrogels functionalized with peptide moieties have been widely used in regenerative medicine applications. While many studies have suggested the importance of affinity binding within PEG hydrogels, the relationships between the structures of the peptide motifs and their binding to protein therapeutics remain largely unexplored, especially in the recently developed thiol-acrylate photopolymerization systems. Herein, we employ Förster resonance energy transfer (FRET) and thiol-acrylate photopolymerizations to investigate how the architectures of affinity peptides in crosslinked hydrogels affect their binding to diffusible proteins. The binding between diffusible streptavidin and biotinylated peptide immobilized to PEG hydrogel network was used as a model system to reveal the interplay between affinity binding and peptide sequences/architectures. In addition, we design peptides with different structures to enhance affinity binding within PEG hydrogels and to provide tunable affinity-based controlled delivery of basic fibroblast growth factor (bFGF). This study demonstrates the importance of affinity binding in controlling the availability of hydrogel-encapsulated proteins and provides strategies for enhancing affinity binding of protein therapeutics to bound peptide moieties in thiol-acrylate photopolymerized PEG hydrogels. The results presented herein should find useful on the design and fabrication of hydrogels to retain and sustained release of growth factors for promoting tissue regeneration.

SUBMITTER: Lin CC 

PROVIDER: S-EPMC2818180 | biostudies-literature | 2009 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Controlling Affinity Binding with Peptide-Functionalized Poly(ethylene glycol) Hydrogels.

Lin Chien-Chi CC   Anseth Kristi S KS  

Advanced functional materials 20090701 14


Poly(ethylene glycol) (PEG) hydrogels functionalized with peptide moieties have been widely used in regenerative medicine applications. While many studies have suggested the importance of affinity binding within PEG hydrogels, the relationships between the structures of the peptide motifs and their binding to protein therapeutics remain largely unexplored, especially in the recently developed thiol-acrylate photopolymerization systems. Herein, we employ Förster resonance energy transfer (FRET) a  ...[more]

Similar Datasets

| S-EPMC3074572 | biostudies-literature
| S-EPMC3993952 | biostudies-literature
| S-EPMC6829336 | biostudies-literature
| S-EPMC4626208 | biostudies-literature
| S-EPMC3419860 | biostudies-other
| S-EPMC6432130 | biostudies-literature
| S-EPMC7021251 | biostudies-literature
| S-EPMC2522266 | biostudies-literature
| S-EPMC2699883 | biostudies-literature
| S-EPMC8006044 | biostudies-literature