Unknown

Dataset Information

0

Modeling species-specific diacylglycerol dynamics in the RAW 264.7 macrophage.


ABSTRACT: A mathematical model of the G protein signaling pathway in RAW 264.7 macrophages downstream of P2Y(6) receptors activated by the ubiquitous signaling nucleotide uridine 5'-diphosphate is developed. The model, which is based on time-course measurements of inositol trisphosphate, cytosolic calcium, and diacylglycerol, focuses particularly on differential dynamics of multiple chemical species of diacylglycerol. When using the canonical pathway representation, the model predicted that key interactions were missing from the current network structure. Indeed, the model suggested that accurate depiction of experimental observations required an additional branch to the signaling pathway. An intracellular pool of diacylglycerol is immediately phosphorylated upon stimulation of an extracellular receptor for uridine 5'-diphosphate and subsequently used to aid replenishment of phosphatidylinositol. As a result of sensitivity analysis of the model parameters, key predictions can be made regarding which of these parameters are the most sensitive to perturbations and are therefore most responsible for output uncertainty.

SUBMITTER: Callender HL 

PROVIDER: S-EPMC2822135 | biostudies-literature | 2010 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modeling species-specific diacylglycerol dynamics in the RAW 264.7 macrophage.

Callender Hannah L HL   Horn Mary Ann MA   DeCamp Dianne L DL   Sternweis Paul C PC   Alex Brown H H  

Journal of theoretical biology 20091031 4


A mathematical model of the G protein signaling pathway in RAW 264.7 macrophages downstream of P2Y(6) receptors activated by the ubiquitous signaling nucleotide uridine 5'-diphosphate is developed. The model, which is based on time-course measurements of inositol trisphosphate, cytosolic calcium, and diacylglycerol, focuses particularly on differential dynamics of multiple chemical species of diacylglycerol. When using the canonical pathway representation, the model predicted that key interactio  ...[more]

Similar Datasets

2009-12-30 | E-GEOD-14612 | biostudies-arrayexpress
2009-12-31 | GSE14612 | GEO
| S-EPMC2813256 | biostudies-literature
| S-EPMC3444243 | biostudies-literature
2020-10-07 | GSE140200 | GEO
| S-EPMC3819897 | biostudies-literature
| S-EPMC5663230 | biostudies-literature
| S-EPMC8065575 | biostudies-literature
| S-EPMC1151244 | biostudies-other
| S-EPMC2441624 | biostudies-literature