Unknown

Dataset Information

0

Map4k4 negatively regulates peroxisome proliferator-activated receptor (PPAR) gamma protein translation by suppressing the mammalian target of rapamycin (mTOR) signaling pathway in cultured adipocytes.


ABSTRACT: The receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is considered a master regulator of adipocyte differentiation and promotes glucose and lipid metabolism in mature adipocytes. We recently identified the yeast Sterile 20 (Ste20) protein kinase ortholog, Map4k4, in an RNA interference-based screen as an inhibitor of PPARgamma expression in cultured adipocytes. Here, we show that RNA interference-mediated silencing of Map4k4 elevates the levels of both PPARgamma1 and PPARgamma2 proteins in 3T3-L1 adipocytes without affecting PPARgamma mRNA levels, suggesting that Map4k4 regulates PPARgamma at a post-transcriptional step. PPARgamma degradation rates are remarkably rapid as measured in the presence of cycloheximide (t(1/2) = 2 h), but silencing Map4k4 had no effect on PPARgamma degradation. However, depletion of Map4k4 significantly enhances [(35)S]methionine/cysteine incorporation into proteins, suggesting that Map4k4 signaling decreases protein translation. We show a function of Map4k4 is to inhibit rapamycin-sensitive mammalian target of rapamycin (mTOR) activity, decreasing 4E-BP1 phosphorylation. In addition, our results show mTOR and 4E-BP1 are required for the increased PPARgamma protein expression upon Map4k4 knockdown. Consistent with this concept, adenovirus-mediated expression of Map4k4 decreased PPARgamma protein levels and mTOR phosphorylation. These data show that Map4k4 negatively regulates PPARgamma post-transcriptionally, by attenuating mTOR signaling and a 4E-BP1-dependent mechanism.

SUBMITTER: Guntur KV 

PROVIDER: S-EPMC2825455 | biostudies-literature | 2010 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Map4k4 negatively regulates peroxisome proliferator-activated receptor (PPAR) gamma protein translation by suppressing the mammalian target of rapamycin (mTOR) signaling pathway in cultured adipocytes.

Guntur Kalyani V P KV   Guilherme Adilson A   Xue Liting L   Chawla Anil A   Czech Michael P MP  

The Journal of biological chemistry 20091228 9


The receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is considered a master regulator of adipocyte differentiation and promotes glucose and lipid metabolism in mature adipocytes. We recently identified the yeast Sterile 20 (Ste20) protein kinase ortholog, Map4k4, in an RNA interference-based screen as an inhibitor of PPARgamma expression in cultured adipocytes. Here, we show that RNA interference-mediated silencing of Map4k4 elevates the levels of both PPARgamma1 and PPARgam  ...[more]

Similar Datasets

| S-EPMC1133817 | biostudies-literature
| S-EPMC6274845 | biostudies-literature
| S-EPMC1221919 | biostudies-other
| S-EPMC3359336 | biostudies-literature
| S-EPMC4631943 | biostudies-literature
| S-EPMC1562413 | biostudies-literature
| S-EPMC3936468 | biostudies-literature
| S-EPMC3981956 | biostudies-literature
| S-EPMC6002945 | biostudies-literature
| S-EPMC3350516 | biostudies-literature