Project description:BackgroundIn this study, we investigated the effect of genetic background on expression profiles. We analysed the transcriptome of mouse hindlimb muscle of five frequently used mouse inbred strains using spotted oligonucleotide microarrays.ResultsThrough ANOVA analysis with a false discovery rate of 10%, we show that 1.4% of the analysed genes is significantly differentially expressed between these mouse strains. Differential expression of several of these genes has been confirmed by quantitative RT-PCR. The number of genes affected by genetic background is approximately ten-fold lower than the number of differentially expressed genes caused by a dystrophic genetic defect.ConclusionsWe conclude that evaluation of the effect of background on gene expression profiles in the tissue under study is an effective and sensible approach when comparing expression patterns in animal models with heterogeneous genetic backgrounds. Genes affected by the genetic background can be excluded in subsequent analyses of the disease-related changes in expression profiles. This is often a more effective strategy than backcrossing and inbreeding to obtain isogenic backgrounds.
Project description:Background'Long read' sequencing methods have been used to identify previously uncharacterized structural variants that cause human genetic diseases. Therefore, we investigated whether long read sequencing could facilitate genetic analysis of murine models for human diseases.ResultsThe genomes of six inbred strains (BTBR T + Itpr3tf/J, 129Sv1/J, C57BL/6/J, Balb/c/J, A/J, SJL/J) were analyzed using long read sequencing. Our results revealed that (i) Structural variants are very abundant within the genome of inbred strains (4.8 per gene) and (ii) that we cannot accurately infer whether structural variants are present using conventional short read genomic sequence data, even when nearby SNP alleles are known. The advantage of having a more complete map was demonstrated by analyzing the genomic sequence of BTBR mice. Based upon this analysis, knockin mice were generated and used to characterize a BTBR-unique 8-bp deletion within Draxin that contributes to the BTBR neuroanatomic abnormalities, which resemble human autism spectrum disorder.ConclusionA more complete map of the pattern of genetic variation among inbred strains, which is produced by long read genomic sequencing of the genomes of additional inbred strains, could facilitate genetic discovery when murine models of human diseases are analyzed.
Project description:Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 g%), or with 1% added TRP (1.2 g%) overnight to three mouse strains. Of these, BTBRT(+)Itpr3(tf)/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N = 8-10). Subsequent marble burying did not differ among diets or strains. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p < 0.05; N = 4-10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize conditions wherein TRP supplementation may best ameliorate sociability deficits.
Project description:Many animals thrive when given a choice of separate sources of macronutrients. How they do this is unknown. Here, we report some studies comparing the spontaneous choices between carbohydrate- and fat-containing food sources of seven inbred mouse strains (B6, BTBR, CBA, JF1, NZW, PWD and PWK) and three mouse models with genetic ablation of taste transduction components (T1R3, ITPR3 and CALHM1). For 8days, each mouse could choose between sources of carbohydrate (CHO-P; sucrose-cornstarch) and fat (Fat-P; vegetable shortening) with each source also containing protein (casein). We found that the B6 and PWK strains markedly preferred the CHO-P diet to the Fat-P diet, the BTBR and JF1 strains markedly preferred the Fat-P diet to the CHO-P diet, and the CBA, NZW and PWD strains showed equal intakes of the two diets (by weight). Relative to their WT littermates, ITPR3 and CALHM1 KO mice had elevated Fat-P preferences but T1R3 KO mice did not. There were differences among strains in adaption to the diet choice and there were differences in response between males and females on some days. These results demonstrate the diverse responses to macronutrients of inbred mice and they point to the involvement of chemosensory detectors (but not sweetness) as contributors to macronutrient selection.
Project description:Short tandem repeats (STRs) play a crucial role in genetic diseases. However, classic disease models such as inbred mice lack such genome wide data in public domain. The examination of STR alleles present in the protein coding regions (are known as protein tandem repeats or PTR) can provide additional functional layer of phenotype regulars. Motivated with this, we analysed the whole genome sequencing data from 71 different mouse strains and identified STR alleles present within the coding regions of 562 genes. Taking advantage of recently formulated protein models, we also showed that the presence of these alleles within protein 3-dimensional space, could impact the protein folding. Overall, we identified novel alleles from a large number of mouse strains and demonstrated that these alleles are of interest considering protein structure integrity and functionality within the mouse genomes. We conclude that PTR alleles have potential to influence protein functions through impacting protein structural folding and integrity.
Project description:Twenty-seven inbred strains of mice were tested for spike-wave discharge (SWD) activity by video-electroencephalographic recordings over a 24-h recording period. Eight strains had reproducible, frequent SWDs, including five strains (C57BLKS/J, CBA/J, DBA/1J, NOR/LtJ, SM/J) previously undiagnosed for this distinctive phenotype. Eighteen other strains exhibited no such activity. Spike-wave discharges usually occurred while the subject was motionless, and in a significant number of annotated instances coincided with an arrest of the subject's relatively unrestrained locomotor activity, which resumed immediately after the discharge ended. In all five new strains, SWDs were suppressed by ethosuximide administration. From the genealogy of inbred strains, we suggest that two ancestors, A and DBA, transmitted genotypes required for SWD in all positive strains. Together these strains with SWDs provide new opportunities to understand the genetic core susceptibility of this distinctive electroencephalographic activity and to explore its relationship to absence epilepsy, a human disorder for which few genes are known.
Project description:Mice are the most widely used animal model to study genotype to phenotype relationships. Inbred mice are genetically identical, which eliminates genetic heterogeneity and makes them particularly useful for genetic studies. Many different strains have been bred over decades and a vast amount of phenotypic data has been generated. In addition, recently whole genome sequencing-based genome-wide genotype data for many widely used inbred strains has been released. Here, we present an approach for in silico fine-mapping that uses genotypic data of 37 inbred mouse strains together with phenotypic data provided by the user to propose candidate variants and genes for the phenotype under study. Public genome-wide genotype data covering more than 74 million variant sites is queried efficiently in real-time to provide those variants that are compatible with the observed phenotype differences between strains. Variants can be filtered by molecular consequences and by corresponding molecular impact. Candidate gene lists can be generated from variant lists on the fly. Fine-mapping together with annotation or filtering of results is provided in a Bioconductor package called MouseFM. In order to characterize candidate variant lists under various settings, MouseFM was applied to two expression data sets across 20 inbred mouse strains, one from neutrophils and one from CD4+ T cells. Fine-mapping was assessed for about 10,000 genes, respectively, and identified candidate variants and haplotypes for many expression quantitative trait loci (eQTLs) reported previously based on these data. For albinism, MouseFM reports only one variant allele of moderate or high molecular impact that only albino mice share: a missense variant in the Tyr gene, reported previously to be causal for this phenotype. Performing in silico fine-mapping for interfrontal bone formation in mice using four strains with and five strains without interfrontal bone results in 12 genes. Of these, three are related to skull shaping abnormality. Finally performing fine-mapping for dystrophic cardiac calcification by comparing 9 strains showing the phenotype with eight strains lacking it, we identify only one moderate impact variant in the known causal gene Abcc6. In summary, this illustrates the benefit of using MouseFM for candidate variant and gene identification.
Project description:Inbred mouse strains are a cornerstone of translational research but paradoxically many strains carry mild inborn errors of metabolism. For example, α-aminoadipic acidemia and branched-chain ketoacid dehydrogenase deficiency are known in C57BL/6J mice. Using RNA sequencing, we now reveal the causal variants in Dhtkd1 and Bckdhb, and the molecular mechanism underlying these metabolic defects. C57BL/6J mice have decreased Dhtkd1 mRNA expression due to a solitary long terminal repeat (LTR) in intron 4 of Dhtkd1. This LTR harbors an alternate splice donor site leading to a partial splicing defect and as a consequence decreased total and functional Dhtkd1 mRNA, decreased DHTKD1 protein and α-aminoadipic acidemia. Similarly, C57BL/6J mice have decreased Bckdhb mRNA expression due to an LTR retrotransposon in intron 1 of Bckdhb. This transposable element encodes an alternative exon 1 causing aberrant splicing, decreased total and functional Bckdhb mRNA and decreased BCKDHB protein. Using a targeted metabolomics screen, we also reveal elevated plasma C5-carnitine in 129 substrains. This biochemical phenotype resembles isovaleric acidemia and is caused by an exonic splice mutation in Ivd leading to partial skipping of exon 10 and IVD protein deficiency. In summary, this study identifies three causal variants underlying mild inborn errors of metabolism in commonly used inbred mouse strains.
Project description:The contribution to genetic diversity of genomic segmental copy number variations (CNVs) is less well understood than that of single-nucleotide polymorphisms (SNPs). While less frequent than SNPs, CNVs have greater potential to affect phenotype. In this study, we have performed the most comprehensive survey to date of CNVs in mice, analyzing the genomes of 42 Mouse Phenome Consortium priority strains. This microarray comparative genomic hybridization (CGH)-based analysis has identified 2094 putative CNVs, with an average of 10 Mb of DNA in 51 CNVs when individual mouse strains were compared to the reference strain C57BL/6J. This amount of variation results in gene content that can differ by hundreds of genes between strains. These genes include members of large families such as the major histocompatibility and pheromone receptor genes, but there are also many singleton genes including genes with expected phenotypic consequences from their deletion or amplification. Using a whole-genome association analysis, we demonstrate that complex multigenic phenotypes, such as food intake, can be associated with specific copy number changes.
Project description:Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC.