Unknown

Dataset Information

0

Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein.


ABSTRACT: The ability to undergo large-scale domain rearrangements is essential for the substrate-binding function of periplasmic binding proteins (PBPs), which are indispensable for nutrient uptake in Gram-negative bacteria. Crystal structures indicate that PBPs typically adopt either an "open" unliganded configuration or a "closed" liganded one. However, it is not clear whether, as a general rule, PBPs remain open until ligand-induced interdomain closure or are in equilibrium with a minor population of unliganded, closed species. Evidence for the latter has been recently reported on maltose-binding protein (MBP) in aqueous solution [Tang, C., et al. (2007) Nature 449, 1078-1082] via paramagnetic relaxation enhancement (PRE), a technique able to probe lowly populated regions of conformational space. Here, we use PRE to study the unliganded open-closed transition of another PBP: glutamine-binding protein (GlnBP). Through a combination of domain structure knowledge and intermolecular and concentration dependence PRE experiments, a set of surface residues was found to be involved in intermolecular interactions. Barring such residues, PRE data on ligand-free GlnBP, paramagnetically labeled at two sites (one at a time), could be appropriately explained by the unliganded, open crystal structure in that it both yielded a good PRE fit and was not significantly affected by PRE-based refinement. Thus, contrary to MBP, our data did not particularly suggest the coexistence of a minor closed conformer. Several possibilities were explored to explain the observed differences in such closely structurally related systems; among them, a particularly interesting one arises from close inspection of the interdomain "hinge" region of various PBPs: strong hydrogen bond interactions discourage large-scale interdomain dynamics.

SUBMITTER: Bermejo GA 

PROVIDER: S-EPMC2831130 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein.

Bermejo Guillermo A GA   Strub Marie-Paule MP   Ho Chien C   Tjandra Nico N  

Biochemistry 20100301 9


The ability to undergo large-scale domain rearrangements is essential for the substrate-binding function of periplasmic binding proteins (PBPs), which are indispensable for nutrient uptake in Gram-negative bacteria. Crystal structures indicate that PBPs typically adopt either an "open" unliganded configuration or a "closed" liganded one. However, it is not clear whether, as a general rule, PBPs remain open until ligand-induced interdomain closure or are in equilibrium with a minor population of  ...[more]

Similar Datasets

| S-EPMC3215197 | biostudies-literature
| S-EPMC2954212 | biostudies-literature
| S-EPMC2770614 | biostudies-literature
| S-EPMC2776245 | biostudies-literature
| S-EPMC134957 | biostudies-literature
| S-EPMC5853799 | biostudies-literature
| S-EPMC5275724 | biostudies-literature
| S-EPMC7188740 | biostudies-literature
| S-EPMC4089482 | biostudies-literature
| S-EPMC6698751 | biostudies-literature