Project description:Angelica hirsutiflora Liu et al.1961, is a perennial herb in the Apiaceae family that is endemic to Taiwan. In this study, the complete circular chloroplast genome of A. hirsutiflora was reconstructed and annotated using Illumina sequencing. The size of the chloroplast genome is 154,266 bp, consisting of two inverted repeats (IRs, 25,075 bp) separated by a large single-copy region (LSC, 86,569 bp) and a small single-copy region (SSC, 17,547 bp). The GC content of the chloroplast genome is 37.6%. There are 114 different genes in the chloroplast genome of A. hirsutiflora, including 80 protein-coding genes, 30 tRNA genes and four rRNA genes. A maximum-likelihood phylogenetic analysis showed that A. hirsutiflora forms a distinct clade, and separated from other species within the genus Angelica. This study provided insights into the evolutionary relationships among different species of Angelica.
Project description:Stimulated by our 2015 Current Biology paper [1], Zambon et al. reinvestigated how three myosin isoforms participate in the formation and constriction of the contractile ring in fission yeast. Our paper presented evidence that these myosin isoforms have distinct roles: "Conventional myosin-II Myo2 is crucial to ring assembly, unconventional myosin-II Myp2 is most important for ring constriction, and type V myosin Myo51 aids the other two myosins." Zambon et al. used different markers to reexamine the contributions of the three myosins to cytokinesis and concluded "that Myo2p is the major motor involved in ring contraction in S. pombe." Here, we show that most of the differences observed by Zambon et al. can be attributed to their use of the Rlc1p-3GFP marker, which genetically interacts with myo2-E1.
Project description:We would like to respond to Brosch et al. regarding our manuscript "Expression of the Splicing Factor Gene SFRS10 Is Reduced in Human Obesity and Contributes to Enhanced Lipogenesis" (Pihlajamäki et al., 2011b). Brosch performed RT-PCR in liver samples from 13 lean and 34 obese individuals, finding no differences in SFRS10 or LPIN1 expression. We wish to address points raised by Brosch, including experimental strategy and analysis of human SFRS10 expression.