Ontology highlight
ABSTRACT: Background
Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective and well-tolerated treatment for idiopathic generalized dystonia. More recently, it has been applied as a treatment for focal and segmental dystonias. This patient population offers an opportunity to study the effects of alteration of pallidal outflow on previously normal limb function.Methods
We sought to retrospectively characterize the extent of novel GPi DBS-induced adverse motor effects in patients with adult-onset cervical and cranial-cervical dystonia using a questionnaire, and compared the findings to dystonia improvement as measured by standard scales.Results
Despite significant improvement in dystonia (65% in mean Burke-Fahn-MarsdenDystonia Rating Scale motor score, p < 0.005, and 59% in mean Toronto Western Spasmodic Torticollis Rating Scale score, p < 0.008), slowing and difficulty with normal motor function was reported in previously nondystonic extremities in 10 of 11 patients. Symptoms were common in both upper and lower extremities and included new difficulties with handwriting (82%), getting up from a chair or in/out of a car (73%), and walking (45%), and were not associated with aberrant lead placement near the internal capsule.Conclusion
Although GPi DBS was shown to be effective in these patients, the influence of GPi DBS on nondystonic body regions deserves further investigation.
SUBMITTER: Berman BD
PROVIDER: S-EPMC2835378 | biostudies-literature | 2009
REPOSITORIES: biostudies-literature
Stereotactic and functional neurosurgery 20090128 1
<h4>Background</h4>Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective and well-tolerated treatment for idiopathic generalized dystonia. More recently, it has been applied as a treatment for focal and segmental dystonias. This patient population offers an opportunity to study the effects of alteration of pallidal outflow on previously normal limb function.<h4>Methods</h4>We sought to retrospectively characterize the extent of novel GPi DBS-induced adverse motor eff ...[more]