A superfamily 3 DNA helicase encoded by plasmid pSSVi from the hyperthermophilic archaeon Sulfolobus solfataricus unwinds DNA as a higher-order oligomer and interacts with host primase.
Ontology highlight
ABSTRACT: Replication proteins encoded by nonconjugative plasmids from the hyperthermophilic archaea of the order Sulfolobales show great diversity in amino acid sequence. We have biochemically characterized ORF735, a replication protein from pSSVi, an integrative nonconjugative plasmid from Sulfolobus solfataricus P2. We show that ORF735 is a DNA helicase of superfamily 3. It unwound double-stranded DNA (dsDNA) in a 3'-to-5' direction in the presence of ATP over a wide range of temperatures, from 37 degrees C to 75 degrees C, and possessed DNA-stimulated ATPase activity. ORF735 existed in solution as a salt-stable dimer and was capable of assembling into a salt-sensitive oligomer that was significantly larger than a hexamer in the presence of a divalent cation (Mg(2+)) and an adenine nucleotide (ATP, dATP, or ADP) or its analog (ATPgammaS or AMPPNP). Both N-terminal and C-terminal portions of ORF735 (87 and 160 amino acid residues, respectively, in size) were required for protein dimerization but dispensable for the formation of the higher-order oligomer. The protein unwound DNA only as a large oligomer. Yeast two-hybrid and coimmunoprecipitation assays revealed that ORF735 interacted with the noncatalytic subunit of host primase. These findings provide clues to the functional role of ORF735 in pSSVi DNA replication.
Project description:The existence of a global gene regulatory system in the hyperthermophilic archaeon Sulfolobus solfataricus is described. The system is responsive to carbon source quality and acts at the level of transcription to coordinate synthesis of three physically unlinked glycosyl hydrolases implicated in carbohydrate utilization. The specific activities of three enzymes, an alpha-glucosidase (malA), a beta-glycosidase (lacS), and an alpha-amylase, were reduced 4-, 20-, and 10-fold, respectively, in response to the addition of supplementary carbon sources to a minimal sucrose medium. Western blot analysis using anti-alpha-glucosidase and anti-beta-glycosidase antibodies indicated that reduced enzyme activities resulted exclusively from decreased enzyme levels. Northern blot analysis of malA and lacS mRNAs revealed that changes in enzyme abundance arose primarily from reductions in transcript concentrations. Culture conditions precipitating rapid changes in lacS gene expression were established to determine the response time of the regulatory system in vivo. Full induction occurred within a single generation whereas full repression occurred more slowly, requiring nearly 38 generations. Since lacS mRNA abundance changed much more rapidly in response to a nutrient down shift than to a nutrient up shift, transcript synthesis rather than degradation likely plays a role in the regulatory response.
Project description:We report the production, purification, and characterization of a type IA DNA topoisomerase, previously designated topoisomerase I, from the hyperthermophilic archaeon Sulfolobus solfataricus. The protein was capable of relaxing negatively supercoiled DNA at 75 degrees C in the presence of Mg2+. Mutation of the putative active site Tyr318 to Phe318 led to the inactivation of the protein. The S. solfataricus enzyme cleaved oligonucleotides in a sequence-specific fashion. The cleavage occurred only in the presence of a divalent cation, preferably Mg2+. The cofactor requirement of the enzyme was partially satisfied by Cu2+, Co2+, Mn2+, Ca2+, or Ni2+. It appears that the enzyme is active with a broader spectrum of metal cofactors in DNA cleavage than in DNA relaxation (Mg2+ and Ca2+). The enzyme-catalyzed oligonucleotide cleavage required at least 7 bases upstream and 2 bases downstream of the cleavage site. Analysis of cleavage by the S. solfataricus enzyme on a set of oligonucleotides revealed a consensus cleavage sequence of the enzyme: 5'-G(A/T)CA(T)AG(T)G(A)X / XX-3'. This sequence bears more resemblance to the preferred cleavage sites of topoisomerases III than to those of topoisomerases I. Based on these data and sequence analysis, we designate the enzyme S. solfataricus topoisomerase III.
Project description:In order to characterize the genome-wide transcriptional response of the hyperthermophilic, aerobic crenarchaeote Sulfolobus solfataricus to UV damage, we used high-density DNA microarrays which covered 3,368 genetic features encoded on the host genome, as well as the genes of several extrachromosomal genetic elements. While no significant up-regulation of genes potentially involved in direct DNA damage reversal was observed, a specific transcriptional UV response involving 55 genes could be dissected. Although flow cytometry showed only modest perturbation of the cell cycle, strong modulation of the transcript levels of the Cdc6 replication initiator genes was observed. Up-regulation of an operon encoding Mre11 and Rad50 homologs pointed to induction of recombinational repair. Consistent with this, DNA double-strand breaks were observed between 2 and 8 h after UV treatment, possibly resulting from replication fork collapse at damaged DNA sites. The strong transcriptional induction of genes which potentially encode functions for pilus formation suggested that conjugational activity might lead to enhanced exchange of genetic material. In support of this, a statistical microscopic analysis demonstrated that large cell aggregates formed upon UV exposure. Together, this provided supporting evidence to a link between recombinational repair and conjugation events.
Project description:Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricusIMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.
Project description:The eukaryotic-like primase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsoPriSL) exhibits a range of activities including template-dependent de novo primer synthesis, primer extension and template-independent terminal nucleotidyl transfer using either rNTPs or dNTPs. Remarkably, the enzyme is able to synthesize products far longer than templates in vitro. Here we show that the long products resulted from template-dependent polymerization across discontinuous templates (PADT) by SsoPriSL. PADT was initiated through either primer synthesis or terminal transfer, and occurred efficiently on templates containing contiguous dCs. Template switching took place when the 3'-end of a growing strand synthesized on one template annealed to another template directly or following the terminal addition of nucleotides, and was subsequently extended on the new template. The key to PADT was the ability of SsoPriSL to promote strand annealing. SsoPriSL catalyzed PADT with either dNTPs or rNTPs as the substrates but preferred the latter. The enzyme remained active in PADT but became inefficient in primer synthesis in vitro when temperature was raised from 55°C to 70°C. Our results suggest that SsoPriSL is capable of bridging noncomplementary DNA ends and, therefore, may serve a role in double-strand DNA break repair in Archaea.
Project description:The term RNA silencing (RNA interference, RNAi) describes a set of mechanisms that regulate gene expression in eukaryotes. Small interfering RNAs (siRNA) and microRNAs (miRNAs) are two major types of RNAi-associated small RNAs (smRNAs) found in most eukaryotic organisms. Despite the presence of a plethora of non-coding RNAs longer than 50-nucleotide (nt) in length in various species of Archaea, little is known about smRNAs in archaea that resemble the 20-24-nt long smRNAs found in eukaryotes, which have been implicated in the post-transcriptional control of gene expression. Here, we report the finding of a large number of smRNAs approximatelly 20-nt in length, including phased smRNAs and potential miRNAs, from the hyperthermophilic archaeon Sulfolobus solfataricus p2 (Ssp2) based on deep sequencing. The expression of some of the miRNA candidates in Ssp2 was confirmed. Consistent with the Ssp2 hyperthermophilic properties, we found that higher temperatures more efficiently induced the production of the miRNA candidates in an in vitro system using the putative foldback precursor transcripts incubated with Ssp2 extract. Although we initially predicted putative target genes of some miRNA candidates, further analysis mapped the cleavage sites downstream of the miRNA candidate complementary regions, similar to those involved in plant miRNA-mediated TAS transcript cleavage. We also identified smRNAs from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci, which play important roles in prokaryotic microbial defense systems. Archaea represent a unique life form next to Bacteria and Eukarya, and our results may provide a useful resource for further in-depth study on the regulation and evolution of smRNAs in this special organism.
Project description:We report the first example of antisense RNA regulation in a hyperthermophilic archaeon. In Sulfolobus solfataricus, the transposon-derived paralogous RNAs, RNA-257(1-4), show extended complementarity to the 3' UTR of the 1183 mRNA, encoding a putative phosphate transporter. Phosphate limitation results in decreased RNA-257(1) and increased 1183 mRNA levels. Correspondingly, the 1183 mRNA is faster degraded in vitro upon duplex formation with RNA-257(1). Insertion of the 1183 3' UTR downstream of the lacS gene results in strongly reduced lacS mRNA levels in transformed cells, indicating that antisense regulation can function in trans.
Project description:Sulfolobus solfataricus is an aerobic crenarchaeon that thrives in acidic volcanic pools. In this study, we have purified and characterized a thermostable alpha-galactosidase from cell extracts of S. solfataricus P2 grown on the trisaccharide raffinose. The enzyme, designated GalS, is highly specific for alpha-linked galactosides, which are optimally hydrolyzed at pH 5 and 90 degrees C. The protein consists of 74.7-kDa subunits and has been identified as the gene product of open reading frame Sso3127. Its primary sequence is most related to plant enzymes of glycoside hydrolase family 36, which are involved in the synthesis and degradation of raffinose and stachyose. Both the galS gene from S. solfataricus P2 and an orthologous gene from Sulfolobus tokodaii have been cloned and functionally expressed in Escherichia coli, and their activity was confirmed. At present, these Sulfolobus enzymes not only constitute a distinct type of thermostable alpha-galactosidases within glycoside hydrolase clan D but also represent the first members from the Archaea.
Project description:Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble alpha-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an alpha-glucosidase gene from the archaeal domain. malA is 2,083 bp and encodes a protein of 693 amino acids with a calculated mass of 80.5 kDa. It is flanked on the 5' side by an unusual 1-kb intergenic region. Northern blot analysis of the malA region identified transcripts for malA and an upstream open reading frame located 5' to the 1-kb intergenic region. The malA transcription start site was located by primer extension analysis to a guanine residue 8 bp 5' of the malA start codon. Gel mobility shift analysis of the malA promoter region suggests that sequences 3' to position -33, including a consensus archaeal TATA box, play an essential role in malA expression. malA homologs were detected by Southern blot analysis in other S. solfataricus strains and in Sulfolobus shibatae, while no homologs were evident in Sulfolobus acidocaldarius, lending further support to the proposed revision of the genus Sulfolobus. Phylogenetic analyses indicate that the closest S. solfataricus alpha-glucosidase homologs are of mammalian origin. Characterization of the recombinant enzyme purified from Escherichia coli revealed differences from the natural enzyme in thermostability and electrophoretic behavior. Glycogen is a substrate for the recombinant enzyme. Unlike maltose hydrolysis, glycogen hydrolysis is optimal at the intracellular pH of the organism. These results indicate a unique role for the S. solfataricus alpha-glucosidase in carbohydrate metabolism.
Project description:We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5) and a temperature of 75-80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism.