Intercalated cell BK-alpha/beta4 channels modulate sodium and potassium handling during potassium adaptation.
Ontology highlight
ABSTRACT: The large-conductance, calcium-activated potassium (BK) channels help eliminate potassium in mammals consuming potassium-rich diets. In the distal nephron, principal cells contain BK-alpha/beta1 channels and intercalated cells contain BK-alpha/beta4 channels. We studied whether BK-beta4-deficient mice (Kcnmb4(-/-)) have altered renal sodium and potassium clearances compared with wild-type mice when fed a regular or potassium-rich diet for ten days. We did not detect differences in urinary flow or fractional excretions of potassium (FE(K)) or sodium (FE(Na)) between Kcnmb4-deficient and wild-type mice fed a regular diet. However, a potassium-rich diet led to >4-fold increases in urinary flows for both groups of mice, although Kcnmb4-deficient mice exhibited less urinary flow, higher plasma potassium concentration, more fluid retention, and significantly lower FE(K) and FE(Na) than wild-type mice despite similar plasma aldosterone levels. Immunohistochemical analysis revealed increased basolateral Na-K-ATPase in principal cells of all potassium-adapted mice, but expression of Na-K-ATPase in intercalated cells was >10-fold lower. The size of intercalated cells reduced and luminal volume increased among potassium-adapted wild-type but not Kcnmb4-deficient mice. Paradoxically, this led to increased urinary fluid velocity in potassium-adapted Kcnmb4-deficient mice compared with wild-type mice. Taken together, these data suggest that BK-alpha/beta4 channels in intercalated cells reduce cell size, increasing luminal volume to accommodate higher distal flow rates during potassium adaptation. These changes streamline flow across the principal cells, producing gradients more favorable for potassium secretion and less favorable for sodium reabsorption.
SUBMITTER: Holtzclaw JD
PROVIDER: S-EPMC2844299 | biostudies-literature | 2010 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA