Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-alpha induction contributes to increased soluble endoglin production in preeclampsia.
Ontology highlight
ABSTRACT: Preeclampsia is a prevalent life-threatening hypertensive disorder of pregnancy. The circulating antiangiogenic factor, soluble endoglin (sEng), is elevated in the blood circulation of women with preeclampsia and contributes to disease pathology; however, the underlying mechanisms responsible for its induction in preeclampsia are unknown.Here, we discovered that a circulating autoantibody, the angiotensin receptor agonistic autoantibody (AT(1)-AA), stimulates sEng production via AT(1) angiotensin receptor activation in pregnant mice but not in nonpregnant mice. We subsequently demonstrated that the placenta is a major source contributing to sEng induction in vivo and that AT(1)-AA-injected pregnant mice display impaired placental angiogenesis. Using drug screening, we identified tumor necrosis factor-alpha as a circulating factor increased in the serum of autoantibody-injected pregnant mice contributing to AT(1)-AA-mediated sEng induction in human umbilical vascular endothelial cells. Subsequently, among all the drugs screened, we found that hemin, an inducer of heme oxygenase, functions as a break to control AT(1)-AA-mediated sEng induction by suppressing tumor necrosis factor-alpha signaling in human umbilical vascular endothelial cells. Finally, we demonstrated that the AT(1)-AA-mediated decreased angiogenesis seen in human placenta villous explants was attenuated by tumor necrosis factor-alpha-neutralizing antibodies, soluble tumor necrosis factor-alpha receptors, and hemin by abolishing both sEng and soluble fms-like tyrosine kinase-1 induction.Our findings demonstrate that AT(1)-AA-mediated tumor necrosis factor-alpha induction, by overcoming its negative regulator, heme oxygenase-1, is a key underlying mechanism responsible for impaired placental angiogenesis by inducing both sEng and soluble fms-like tyrosine kinase-1 secretion from human villous explants. Our results provide important new targets for diagnosis and therapeutic intervention in the management of preeclampsia.
SUBMITTER: Zhou CC
PROVIDER: S-EPMC2844327 | biostudies-literature | 2010 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA