Unknown

Dataset Information

0

Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by Pseudomonas syringae pv. syringae 22d/93.


ABSTRACT: The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces the rare amino acid 3-methylarginine (MeArg), which is highly active against the closely related soybean pathogen Pseudomonas syringae pv. glycinea. Since these pathogens compete for the same habitat, Pss22d is a promising candidate for biocontrol of P. syringae pv. glycinea. The MeArg biosynthesis gene cluster codes for the S-adenosylmethionine (SAM)-dependent methyltransferase MrsA, the putative aminotransferase MrsB, and the amino acid exporter MrsC. Transfer of the whole gene cluster into Escherichia coli resulted in heterologous production of MeArg. The methyltransferase MrsA was overexpressed in E. coli as a His-tagged protein and functionally characterized (K(m), 7 mM; k(cat), 85 min(-1)). The highly selective methyltransferase MrsA transfers the methyl group from SAM into 5-guanidino-2-oxo-pentanoic acid to yield 5-guanidino-3-methyl-2-oxo-pentanoic acid, which then only needs to be transaminated to result in the antibiotic MeArg.

SUBMITTER: Braun SD 

PROVIDER: S-EPMC2849186 | biostudies-literature | 2010 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by Pseudomonas syringae pv. syringae 22d/93.

Braun S D SD   Hofmann J J   Wensing A A   Ullrich M S MS   Weingart H H   Völksch B B   Spiteller D D  

Applied and environmental microbiology 20100226 8


The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces the rare amino acid 3-methylarginine (MeArg), which is highly active against the closely related soybean pathogen Pseudomonas syringae pv. glycinea. Since these pathogens compete for the same habitat, Pss22d is a promising candidate for biocontrol of P. syringae pv. glycinea. The MeArg biosynthesis gene cluster codes for the S-adenosylmethionine (SAM)-dependent methyltransferase MrsA, the putative aminotransferase MrsB, and  ...[more]

Similar Datasets

| S-EPMC1951903 | biostudies-literature
| S-EPMC94769 | biostudies-literature
| S-EPMC93816 | biostudies-literature
| S-EPMC3983314 | biostudies-literature
| S-EPMC3945005 | biostudies-literature
| S-EPMC1182459 | biostudies-literature
| S-EPMC4751327 | biostudies-literature
| S-EPMC3993152 | biostudies-literature
| S-EPMC1855804 | biostudies-literature
| S-EPMC3496975 | biostudies-literature