Unknown

Dataset Information

0

Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma.


ABSTRACT: HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using reverse transcription-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrently activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a phosphoinostide 3-kinase (PI3K) inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with tumor necrosis factor-related apoptosis-including ligand resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent, and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies.

SUBMITTER: Costa BM 

PROVIDER: S-EPMC2849935 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma.

Costa Bruno M BM   Smith Justin S JS   Chen Ying Y   Chen Justin J   Phillips Heidi S HS   Aldape Kenneth D KD   Zardo Giuseppe G   Nigro Janice J   James C David CD   Fridlyand Jane J   Reis Rui M RM   Costello Joseph F JF  

Cancer research 20100112 2


HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using reverse transcription-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrently activated wi  ...[more]

Similar Datasets

| S-EPMC6356490 | biostudies-literature
| S-EPMC4991443 | biostudies-literature
| S-EPMC3257186 | biostudies-literature
| S-EPMC8285409 | biostudies-literature
| S-EPMC6515110 | biostudies-literature
| S-EPMC5761544 | biostudies-literature
| S-EPMC8380354 | biostudies-literature
| S-EPMC4860159 | biostudies-other
| S-EPMC3607268 | biostudies-literature
| S-EPMC6607048 | biostudies-literature