Bioinformatic analysis of gene sets regulated by ligand-activated and dominant-negative peroxisome proliferator-activated receptor gamma in mouse aorta.
Ontology highlight
ABSTRACT: OBJECTIVE:Drugs that activate peroxisome proliferator-activated receptor (PPAR) gamma improve glucose sensitivity and lower blood pressure, whereas dominant-negative mutations in PPARgamma cause severe insulin resistance and hypertension. We hypothesize that these PPARgamma mutants regulate target genes opposite to those of ligand-mediated activation, and we tested this hypothesis on a genomewide scale. METHODS AND RESULTS:We integrated gene expression data in aorta specimens from mice treated with the PPARgamma ligand rosiglitazone with data from mice containing a globally expressed knockin of the PPARgamma P465L dominant-negative mutation. We also integrated our data with publicly available data sets containing the following: (1) gene expression profiles in many human tissues, (2) PPARgamma target genes in 3T3-L1 adipocytes, and (3) experimentally validated PPARgamma binding sites throughout the genome. Many classic PPARgamma target genes were induced by rosiglitazone and repressed by dominant-negative PPARgamma. A similar pattern was observed for about 90% of the gene sets regulated by both rosiglitazone and dominant-negative PPARgamma. Genes exhibiting this pattern of contrasting regulation were significantly enriched for nearby PPARgamma binding sites. CONCLUSIONS:These results provide convincing evidence that the PPARgamma P465L mutation causes transcriptional effects that are opposite to those mediated by PPARgamma ligand, thus validating mice carrying the mutation as a model of PPARgamma interference.
SUBMITTER: Keen HL
PROVIDER: S-EPMC2850258 | biostudies-literature | 2010 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA