Unknown

Dataset Information

0

Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy.


ABSTRACT: Photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to generate reactive species that kill tumor and tumor vasculature cells. Nitric oxide produced by these cells could be procarcinogenic by inhibiting apoptosis or promoting angiogenesis and tumor growth. The purpose of this study was to determine whether tumor cells upregulate NO as a cytoprotective measure during PDT. Breast tumor COH-BR1 cells sensitized in their mitochondria with 5-aminolevulinic acid (ALA)-derived protoporphyrin IX died apoptotically after irradiation, ALA- and light-only controls showing no effect. Western analysis revealed that inducible nitric oxide synthase (iNOS) was upregulated >3-fold within 4 h after ALA/light treatment, whereas other NOS isoforms were unaffected. Exposing cells to a NOS inhibitor (L-NAME or 1400W) during photochallenge enhanced caspase-3/7 activation and apoptotic killing up to 2- to 3-fold while substantially reducing chemiluminescence-assessed NO production, suggesting that this NO was cytoprotective. Consistently, the NO scavenger cPTIO enhanced ALA/light-induced caspase-3/7 activation and apoptotic kill by >2.5-fold. Of added significance, cells could be rescued from 1400W-exacerbated apoptosis by an exogenous NO donor, spermine-NONOate. This is the first reported evidence for increased tumor cell resistance due to iNOS upregulation in a PDT model. Our findings indicate that stress-elicited NO in PDT-treated tumors could compromise therapeutic efficacy and suggest NOS-based pharmacologic interventions for preventing this.

SUBMITTER: Bhowmick R 

PROVIDER: S-EPMC2856718 | biostudies-literature | 2010 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy.

Bhowmick Reshma R   Girotti Albert W AW  

Free radical biology & medicine 20100204 10


Photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to generate reactive species that kill tumor and tumor vasculature cells. Nitric oxide produced by these cells could be procarcinogenic by inhibiting apoptosis or promoting angiogenesis and tumor growth. The purpose of this study was to determine whether tumor cells upregulate NO as a cytoprotective measure during PDT. Breast tumor COH-BR1 cells sensitized in their mitochondria with 5-aminolevulinic  ...[more]

Similar Datasets

| S-EPMC3939925 | biostudies-literature
| S-EPMC3594367 | biostudies-literature
| S-EPMC6895962 | biostudies-literature
| S-EPMC6520946 | biostudies-literature
2021-01-18 | GSE164521 | GEO
| S-EPMC6538286 | biostudies-literature
| S-EPMC6889170 | biostudies-literature
| S-EPMC1310911 | biostudies-literature
| S-EPMC2964200 | biostudies-literature
2023-06-01 | PXD040726 | Pride