Project description:Pigs have been recognised as a reservoir of livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Europe, Asia and North America. However, little is known about the presence and distribution of MRSA in the Australian pig population and pig industry. This study describes the presence, distribution and molecular characteristics of the human adapted Australian CA-MRSA ST93 isolated from pigs, people, and the environment within a piggery. Isolates were subjected to antibiotic susceptibility testing, DNA microarray, whole genome sequencing, multi locus sequence typing, virulence and resistance gene characterization and phylogenetic analysis. MRSA were isolated from 60% (n = 52) of farm workers where 84% of isolates returned ST93 and the rest ST398. Of the thirty-one pig isolates tested further, an equal number of ST398 and ST93 (15 each) and one as ST30-V were identified. Four of six environmental isolates were identified as ST93 and two as ST398. This study has identified for the first time in Australia the occurrence of CA-MRSA ST93 and LA-MRSA ST398 amongst farm workers, pigs, and the farm environment. Comparative genome analysis indicates that ST398 is likely to have been introduced into Australia from Europe or North America. This study also reports the first linezolid resistant MRSA isolated in Australia.
Project description:Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic microorganism that is increasingly causing public health concern worldwide. The objective of this study was to determine the transmission and occurrence of MRSA in a slaughterhouse environment and evaluate its antimicrobial resistance and genetic characterization. In this study, we conducted a comprehensive epidemiological survey of S. aureus by spa typing and whole-genome sequencing (WGS) of samples obtained from the pork production chain, the environment, and community residents. To clarify the evolutionary relationships of MRSA sequence type (ST) 398 in this study and global isolates, 197 published whole-genome sequences data of MRSA ST398 strains were downloaded from the GenBank database and included in the phylogenetic analysis. A total of 585 porcine samples (snout and carcass swabs), 78 human nasal samples, and 136 environmental samples were collected. The MRSA isolates were detected at higher frequencies in samples from swine (15.0%) than carcasses (10.0%), slaughterhouse workers (8.0%), community residents (0%), and environment samples (5.9%). The spa typing results showed that t571 accounted for a higher proportion than other spa types. Closely related isolates from the samples of swine, slaughterhouse workers, carcasses, carrier vehicle, and surrounding fishpond water indicate that MRSA ST398 strains may spread among swine, humans, and the environment. MRSA ST398-t571 isolates were genetically different from global strains, except for two Korean isolates, which showed genetic closeness with it. In addition, a MRSA ST398 isolate recovered from an infected patient in Europe differed by only 31 SNPs from the airborne dust-associated strain isolated in this study, thereby suggesting potential transmission among different countries. Antimicrobial susceptibility testing results demonstrated that 99.0% (96/97) of MRSA and 95.1% (231/243) of methicillin-sensitive S. aureus (MSSA) showed multidrug-resistant (MDR) phenotypes. According to WGS analysis, the poxtA-carrying segment (IS431mec-optrA-IS1216-fexB-IS431mec) was reported in MRSA ST398 isolates for the first time. The coexistence of cfr and optrA in a plasmid was first detected in MRSA ST398. The potential transmission of MRSA among humans, animals, and the environment is a cause for concern. The emergence and transmission of LA-MRSA ST398 with high levels of resistance profiles highlight the urgent need for LA-MRSA surveillance.
Project description:Macrophages play important roles in the innate and acquired immune responses against Leishmania parasites. Depending on the subset and activation status, macrophages may eliminate intracellular parasites; however, these host cells also can offer a safe environment for Leishmania replication. In this sense, the fate of the parasite may be influenced by the phenotype of the infected macrophage, linked to the subtype of classically activated (M1) or alternatively activated (M2) macrophages. In the present study, M1 and M2 macrophage subsets were analyzed by double-staining immunohistochemistry in skin biopsies from patients with American cutaneous leishmaniasis (ACL) caused by L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis ,and L. (L.) infantum chagasi. High number of M1 macrophages was detected in nonulcerated cutaneous leishmaniasis (NUCL) caused by L. (L.) infantum chagasi (M1 = 112 ± 12, M2 = 43 ± 12 cells/mm2). On the other side, high density of M2 macrophages was observed in the skin lesions of patients with anergic diffuse cutaneous leishmaniasis (ADCL) (M1 = 195 ± 25, M2 = 616 ± 114), followed by cases of localized cutaneous leishmaniasis (LCL) caused by L. (L.) amazonensis (M1 = 97 ± 24, M2 = 219 ± 29), L. (V.) panamensis (M1 = 71 ± 14, M2 = 164 ± 14), and L. (V.) braziliensis (M1 = 50 ± 13, M2 = 53 ± 10); however, low density of M2 macrophages was observed in NUCL. The data presented herein show the polarization of macrophages in skin lesions caused by different Leishmania species that may be related with the outcome of the disease.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) of sequence types ST398 and ST9 are dominant lineages among livestock in Europe and Asia, respectively. Although both STs were commonly found as colonizers of the skin and the mucosal membranes, MRSA ST398, rather than MRSA ST9, has been reported to cause infections in humans and animals. Herein, we comparatively analyzed the genomic characteristics, fitness and virulence of MRSA ST398 and ST9 isolated from pigs in both China (CHN) and Germany (GER) to explore the factors that lead to differences in their epidemics and pathogenicity. We observed that the CHN-MRSA ST9 and the GER-MRSA ST9 have evolved independently, whereas the CHN-MRSA ST398 and GER-MRSA ST398 had close evolutionary relationships. Resistance to antimicrobial agents commonly used in livestock, the enhanced ability of biofilm formation, and the resistance to desiccation contribute to the success of the dominant clones of CHN-MRSA ST9 and GER-MRSA ST398, and the vwbνSaα gene on the genomic island might in part contribute to their colonization fitness in pigs. All MRSA ST398 strains revealed more diverse genome structures, higher tolerance to acids and high osmotic pressure, and greater competitive fitness in co-culture experiments. Notably, we identified and characterized a novel hysAνSaβ gene, which was located on the genomic island νSaβ of MRSA ST398 but was absent in MRSA ST9. The enhanced pathogenicity of the MRSA ST398 strains due to hysAνSaβ might in part explain why MRSA ST398 strains are more likely to cause infections.
Project description:The global increase of community-associated (CA) infections with methicillin-resistant Staphylococcus aureus (MRSA) is a major healthcare problem. Although sequence type (ST) 398 MRSA was first described as a livestock-associated (LA) lineage, human-adapted MRSA (HO-MRSA) ST398 without livestock contact has subsequently been reported from China in our previous study and other later research. The proportion of ST398 HO-MRSA has also remarkably increased in recent years in China. Based on 3878 S. aureus isolates that were collected in a general hospital between 2008 and 2018, we identified 56 ST398 HO-MRSA isolates. The four early appearing isolates of them have been sequenced by whole-genome sequencing (WGS) in our previous study. Here, by usage of WGS on the later-appearing 52 isolates and analyzing the phylogenetic dynamics of the linage, we found that 50 isolates clustered together with the former 4 isolates, making it a main clade out of MSSA clones and other MRSA clones, although ST398 HO-MRSA evolved with multiple origins. Drug resistance and virulence gene analysis based on the WGS data demonstrated that ST398 HO-MRSA main clade exhibited a similar pattern in both parts. Furthermore, they all carried a conserved variant of prophage 3 to guarantee virulence and a short SCCmec type V element of class D to maintain considerable lower methicillin resistance. Further phenotypical research verified that the epidemic HO-MRSA ST398 displayed enhanced biofilm formation ability when keeping high virulence. The dual advantages of virulence and biofilm formation in the HO-MRSA ST398 subtype promote their fitness in the community and even in the healthcare environment, which poses a serious threat in clinical S. aureus infections. Therefore, further surveillance is required to prevent and control the problematic public health impact of HO-MRSA ST398 in the future.
Project description:Multidrug-resistant (MDR) Staphylococcus aureus has been increasingly isolated from pigs and people in close contact with them, especially livestock-associated methicillin-resistant S. aureus (LA-MRSA). In this cross-sectional study, we investigated S. aureus colonization in pigs and farm workers, their resistance profile, and genetic background to estimate interspecies transmission potential within farms from Rio de Janeiro state, Brazil, between 2014 and 2019. We collected nasal swabs from 230 pigs and 27 workers from 16 and 10 farms, respectively. Five MDR strains were subjected to whole genome sequencing. Fourteen (6.1%) pigs and seven (25.9%) humans were colonized with S. aureus, mostly (64-71%) MDR strains. Resistance to clindamycin, erythromycin, penicillin, and tetracycline was the most common among the pig and human strains investigated. MDR strains shared several resistance genes [blaZ, dfrG, fexA, lsa(E), and tet(M)]. Pig and human strains recovered from the same farm shared the same genetic background and antimicrobial resistance profile. LA-MRSA ST398-SCCmecV-t011 was isolated from pigs in two farms and from a farm worker in one of them, suggesting interspecies transmission. The association between pig management practices and MDR S. aureus colonization might be investigated in additional studies.
Project description:Purpose of reviewSkin type diversity in image datasets refers to the representation of various skin types. This diversity allows for the verification of comparable performance of a trained model across different skin types. A widespread problem in datasets involving human skin is the lack of verifiable diversity in skin types, making it difficult to evaluate whether the performance of the trained models generalizes across different skin types. For example, the diversity issues in skin lesion datasets, which are used to train deep learning-based models, often result in lower accuracy for darker skin types that are typically under-represented in these datasets. Under-representation in datasets results in lower performance in deep learning models for under-represented skin types.Recent findingsThis issue has been discussed in previous works; however, the reporting of skin types, and inherent diversity, have not been fully assessed. Some works report skin types but do not attempt to assess the representation of each skin type in datasets. Others, focusing on skin lesions, identify the issue but do not measure skin type diversity in the datasets examined.SummaryEffort is needed to address these shortcomings and move towards facilitating verifiable diversity. Building on previous works in skin lesion datasets, this review explores the general issue of skin type diversity by investigating and evaluating skin lesion datasets specifically. The main contributions of this work are an evaluation of publicly available skin lesion datasets and their metadata to assess the frequency and completeness of reporting of skin type and an investigation into the diversity and representation of each skin type within these datasets.Supplementary informationThe online version contains material available at 10.1007/s13671-024-00440-0.
Project description:Staphylococcus aureus (S. aureus) causes gastrointestinal illness worldwide. Disinfectants are used throughout the food chain for pathogenic bacteria control. We investigated S. aureus bioavailability in swine Mandibular lymph node tissue (MLT) and pork sausage meat (PSM), established susceptibility values for S. aureus to disinfectants, and determined the multilocus sequence type of MRSA strains. Antimicrobial and disinfectant susceptibility profiles were determined for 164 S. aureus strains isolated from swine feces (n = 63), MLT (n = 49) and PSM (n = 52). No antimicrobial resistance (AMR) was detected to daptomycin, nitrofurantoin, linezolid, and tigecycline, while high AMR prevalence was determined to erythromycin (50.6%), tylosin tartrate (42.7%), penicillin (72%), and tetracycline (68.9%). Methicillin-resistant S. aureus (MRSA) strains, ST398 (n = 6) and ST5 (n = 1), were found in the MLT and PSM, 4 MRSA in MLT and 3 MRSA strains in the PSM. About 17.5% of feces strains and 41.6% of MLT and PSM strains were resistant to chlorhexidine. All strains were susceptible to triclosan and benzalkonium chloride, with no cross-resistance between antimicrobials and disinfectants. Six MRSA strains had elevated susceptibilities to 18 disinfectants. The use of formaldehyde and tris(hydroxylmethyl)nitromethane in DC&R was not effective, which can add chemicals to the environment. Didecyldimethylammonium chloride and benzyldimethylhexadecylammonium chloride were equally effective disinfectants. ST398 and ST5 MRSA strains had elevated susceptibilities to 75% of the disinfectants tested. This study establishes susceptibility values for S. aureus strains from swine feces, mandibular lymph node tissue, and commercial pork sausage against 24 disinfectants. Since it was demonstrated that S. aureus and MRSA strains can be found deep within swine lymph node tissue, it may be beneficial for the consumer if raw swine lymph node tissue is not used in uncooked food products and pork sausage.
Project description:Skin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist clinicians in this task is using computer-aided diagnosis tools that automatically segment skin lesions from dermoscopic images. We propose a novel adversarial learning-based framework called Efficient-GAN (EGAN) that uses an unsupervised generative network to generate accurate lesion masks. It consists of a generator module with a top-down squeeze excitation-based compound scaled path, an asymmetric lateral connection-based bottom-up path, and a discriminator module that distinguishes between original and synthetic masks. A morphology-based smoothing loss is also implemented to encourage the network to create smooth semantic boundaries of lesions. The framework is evaluated on the International Skin Imaging Collaboration Lesion Dataset. It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and accuracy of 90.1%, 83.6%, and 94.5%, respectively. We also design a lightweight segmentation framework called Mobile-GAN (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters, thus resulting in faster inference times for low compute resource settings.