Project description:Streptococcus equi subsp. equi (SEE) is a host-restricted bacterium that causes the common infectious upper respiratory disease known as strangles in horses. Perpetuation of SEE infection appears attributable to inapparent carrier horses because it does not persist long-term in the environment, infect other host mammals or vectors, and result in short-lived immunity. Whether pathogen factors enable SEE to remain in horses without causing clinical signs remains poorly understood. Thus, our objective was to use next-generation sequencing technologies to characterize the transcriptome of isolates of SEE from horses with acute clinical strangles and inapparent carrier horses to assess pathogen-associated changes that might reflect adaptions of SEE to the host contributing to inapparent carriage. RNA sequencing of SEE isolates from Pennsylvania demonstrated no genes that were differentially expressed between acute clinical and inapparent carrier isolates of SEE.
Project description:By screening a genomic lambda library of Streptococcus equi subsp. zooepidemicus, we have cloned and sequenced a gene, termed fnz, encoding a fibronectin (Fn)-binding protein called FNZ. On the basis of the deduced amino acid sequence of FNZ, the mature protein has a molecular mass of approximately 61 kDa. Analysis of FNZ reveals a structural organization similar to that of other cell surface proteins from streptococci and staphylococci. The Fn-binding activity is localized to two domains in the C-terminal part of FNZ. One domain is composed of five repeats, which contain a motif similar to what has earlier been found in other Fn-binding proteins in streptococci and staphylococci. The first and second repeats are separated by a short stretch of amino acids, including the motif LAGESGET, which is an important part of the second Fn-binding domain. This motif is also present in an Fn-binding domain (UR) in protein F of Streptococcus pyogenes. A fusion protein covering the Fn-binding domain of FNZ inhibits the binding of the 29-kDa N-terminal fragment of Fn to cells of various streptococcal species as well as to Staphylococcus aureus.
Project description:We describe a case of an infant with recurrent bacteremia caused by Streptococcus equi subsp. zooepidemicus, likely transmitted from mother to infant. Our case highlights the importance of an epidemiological history and molecular diagnostics in ascertaining insights into transmission, pathogenesis, and optimal management.
Project description:Streptococcus equi subsp. zooepidemicus is a known zoonotic pathogen. In this public health investigation conducted in Virginia, USA, in 2013, we identified a probable family cluster of S. zooepidemicus cases linked epidemiologically and genetically to infected guinea pigs. S. zooepidemicus infections should be considered in patients who have severe clinical illness and report guinea pig exposure.
Project description:Cefquinome is administered in horses for the treatment of respiratory infection caused by Streptococcus equi subsp. zooepidemicus, and septicemia caused by Escherichia coli. However, there have been no attempts to use cefquinome against Streptococcus equi subsp. equi (S. equi), the causative agent of strangles. Hence the objective of this study was to calculate an optimal dosage of cefquinome against S. equi based on pharmacokinetics and pharmacodynamics integration. Cefquinome (1.0 mg/kg) was administered by intravenous and intramuscular routes to six healthy thoroughbred foals. Serum cefquinome concentrations were determined by high-performance liquid chromatography. The in vitro and ex vivo antibacterial activity were determined from minimum inhibitory concentrations (MIC) and bacterial killing curves. The optimal dosage was calculated from the integration of pharmacokinetic parameters and area under the curve (AUC24h/MIC) values. Total body clearance and volume of distribution of cefquinome after intravenous administration were 0.06 L/h/kg and 0.09 L/kg, respectively. Following intramuscular administration, a maximum concentration of 0.73 ?g/mL at 1.52 h (Tmax) and a systemic bioavailability of 37.45% were observed. The MIC of cefquinome against S. equi was 0.016 ?g/mL. The ex vivo AUC24h/MIC values representing bacteriostatic, and bactericidal activity were 113.11, and 143.14 h, respectively. Whereas the %T?>?MIC for bactericidal activity was 153.34%. In conclusion, based on AUC24h/MIC values and pharmacokinetic parameters, cefquinome when administered by intramuscularly at a dosage of 0.53 mg/kg every 24 h, would be effective against infection caused by S. equi in foals. Further studies may be necessary to confirm its therapeutic efficacy in a clinical environment.
Project description:Streptococcus equi subsp. equi (SEE) is a host-restricted equine pathogen considered to have evolved from Streptococcus equi subsp. zooepidemicus (SEZ). SEZ is promiscuous in host range and is commonly recovered from horses as a commensal. Comparison of a single strain each of SEE and SEZ using whole-genome sequencing, supplemented by PCR of selected genes in additional SEE and SEZ strains, was used to characterize the evolution of SEE. But the known genetic variability of SEZ warrants comparison of the whole genomes of multiple SEE and SEZ strains. To fill this knowledge gap, we utilized whole-genome sequencing to characterize the accessory genome elements (AGEs; i.e., elements present in some SEE strains but absent in SEZ or vice versa) and methylomes of 50 SEE and 50 SEZ isolates from Texas. Consistent with previous findings, AGEs consistently found in all SEE isolates were primarily from mobile genetic elements that might contribute to host restriction or pathogenesis of SEE. Fewer AGEs were identified in SEZ because of the greater genomic variability among these isolates. The global methylation patterns of SEE isolates were more consistent than those of the SEZ isolates. Among homologous genes of SEE and SEZ, differential methylation was identified only in genes of SEE encoding proteins with functions of quorum sensing, exopeptidase activity, and transitional metal ion binding. Our results indicate that effects of genetic mobile elements in SEE and differential methylation of genes shared by SEE and SEZ might contribute to the host specificity of SEE. IMPORTANCE Strangles, caused by the host-specific bacterium Streptococcus equi subsp. equi (SEE), is the most commonly diagnosed infectious disease of horses worldwide. Its ancestor, Streptococcus equi subsp. zooepidemicus (SEZ), is frequently isolated from a wide array of hosts, including horses and humans. A comparison of the genomes of a single strain of SEE and SEZ has been reported, but sequencing of further isolates has revealed variability among SEZ strains. Thus, the importance of this study is that it characterizes genomic and methylomic differences of multiple SEE and SEZ isolates from a common geographic region (viz., Texas). Our results affirm many of the previously described differences between the genomes of SEE and SEZ, including the role of mobile genetic elements in contributing to host restriction. We also provide the first characterization of the global methylome of Streptococcus equi and evidence that differential methylation might contribute to the host restriction of SEE.
Project description:Streptococcus equi subsp. zooepidemicus is an opportunistic pathogen. It has caused a very large economic loss in the swine industry of China and has become a threat to human health. We announce the complete genome sequence of S. equi subsp. zooepidemicus strain ATCC 35246, which provides opportunities to understand its pathogenesis mechanism and genetic basis.
Project description:Underdiagnosis of fatal spotted fever may be attributed to nonspecific clinical features and insensitive acute-phase serologic studies. We describe the importance of molecular and immunohistochemical methods in establishing the postmortem diagnosis of locally acquired Israeli spotted fever due to Rickettsia conorii subsp. israelensis in a traveler returning to Israel from India.
Project description:Background and aimUpper respiratory tract infections are common in horses and can be caused by a variety of pathogens, mainly Streptococcus equi subsp. equi, which are a significant equine pathogen causing major health issues as well as financial losses to the equine industry. This study aimed to determine the prevalence of Streptococcal bacteria in equines in Egypt, and characterize vancomycin-resistant S. equi subsp. equi phenotypically and genotypically.Materials and methodsS. equi subsp. equi was isolated from internal nares of horses. All strains were confirmed by polymerase chain reaction-based detection of Streptococcus genus-specific 16S rRNA, sodA and seeI genes. Antibiotic susceptibility was determined phenotypically using the disk diffusion method. Genotypic detection of antibiotic resistance genes was performed by analyzing as b-lactamase resistance (blaZ), tetracycline resistance (tetK), vancomycin resistance (vanA), and chloramphenicol resistance (fexA).ResultsEight streptococcal isolates were confirmed as S. equi subsp. equi. The genotypic characterization of antibiotic resistance showed resistance to vanA and tetK, with a frequency of 87.5% and 12.5%, respectively, while the frequency of sensitivity was 100% for blaz gene and fexA gene.ConclusionIn this study, we assessed vancomycin-resistant S. equi subsp. equi from equines suffering from respiratory manifestation in Egypt.
Project description:The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. Streptococcus equi subspecies equi is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of S. equi in whole equine blood or in the presence of H2O2 to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in S. equi, following incubation in whole blood and in the presence of H2O2, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of S. equi in whole blood or H2O2, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for S. equi to resist aspects of the immune response in vitro, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.