Unknown

Dataset Information

0

Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining.


ABSTRACT: Metabolomics experiments seldom achieve their aim of comprehensively covering the entire metabolome. However, important information can be gleaned even from sparse datasets, which can be facilitated by placing the results within the context of known metabolic networks. Here we present a method that allows the automatic assignment of identified metabolites to positions within known metabolic networks, and, furthermore, allows automated extraction of sub-networks of biological significance. This latter feature is possible by use of a gap-filling algorithm. The utility of the algorithm in reconstructing and mining of metabolomics data is shown on two independent datasets generated with LC-MS LTQ-Orbitrap mass spectrometry. Biologically relevant metabolic sub-networks were extracted from both datasets. Moreover, a number of metabolites, whose presence eluded automatic selection within mass spectra, could be identified retrospectively by virtue of their inferred presence through gap filling. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-009-0196-9) contains supplementary material, which is available to authorized users.

SUBMITTER: Jourdan F 

PROVIDER: S-EPMC2874485 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining.

Jourdan Fabien F   Cottret Ludovic L   Huc Laurence L   Wildridge David D   Scheltema Richard R   Hillenweck Anne A   Barrett Michael P MP   Zalko Daniel D   Watson David G DG   Debrauwer Laurent L  

Metabolomics : Official journal of the Metabolomic Society 20100106 2


Metabolomics experiments seldom achieve their aim of comprehensively covering the entire metabolome. However, important information can be gleaned even from sparse datasets, which can be facilitated by placing the results within the context of known metabolic networks. Here we present a method that allows the automatic assignment of identified metabolites to positions within known metabolic networks, and, furthermore, allows automated extraction of sub-networks of biological significance. This l  ...[more]

Similar Datasets

| S-EPMC5748896 | biostudies-literature
| S-EPMC5364647 | biostudies-literature
| S-EPMC7987574 | biostudies-literature
| S-EPMC9023513 | biostudies-literature
| S-EPMC6977586 | biostudies-literature
| S-EPMC2844990 | biostudies-literature
| S-EPMC7075926 | biostudies-literature
| S-EPMC4833320 | biostudies-literature
| S-EPMC2447764 | biostudies-literature
| S-EPMC3228863 | biostudies-literature