The CCAAT box binding transcription factor, nuclear factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene.
Ontology highlight
ABSTRACT: Dihydrodiol dehydrogenases are a family of aldo-keto reductases (AKR1Cs) involved in the metabolism of steroid hormones and xenobiotics. Herein, we have cloned and characterized the proximal promoter region of the human AKR1C1 gene. The 5' flanking proximal promoter region of the AKR1C1 gene consists of a TATA box and an inverted CCAAT binding site. Deletion analysis of the 5' flanking, approximately 3.0 kb region of the human AKR1C1 gene identified the region between -128 and -88 as the minimal proximal promoter essential for basal transcription of AKR1C1 in human ovarian (2008 and 2008/C13*), lung (H23 and A549) and liver carcinoma (HepG2) cells. Site-directed mutagenesis studies indicated that the transcription factor binding sites for NF-Y/CEBP were involved in controlling the basal transcription of AKR1C1 in all the cancer cells studied. Electrophoretic mobility shift (EMSAs) and gel-supershift assays demonstrated that the transcription factor NF-Y preferentially binds to the inverted CCAAT box at (-109)ATTGG(-105) of the AKR1C1 gene. Chromatin immunoprecipitation (ChIP) analysis confirmed the in vivo association between NF-Y and human AKR1C1 gene promoter in human ovarian, lung and liver carcinoma cells. Ectopic expression of NF-Ys increased the AKR1C1 gene transcription, whereas expression of a dominant-negative NF-YA or suppression of NF-YA decreased the AKR1C1 gene transcription. A 2-fold increase in AKR1C1 transcription was observed specifically in cisplatin-treated 2008 cells that were CCAAT box-dependent. These results indicate that the NF-Y regulates the basal transcription of AKR1C1 in human ovarian, lung and liver carcinoma cells and the cisplatin-induced transcription in human ovarian carcinoma cells.
SUBMITTER: Pallai R
PROVIDER: S-EPMC2874818 | biostudies-literature | 2010 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA