The innate immune response affects the development of the autoimmune response in Theiler's virus-induced demyelinating disease.
Ontology highlight
ABSTRACT: Multiple sclerosis (MS) is a human CNS autoimmune demyelinating disease. Epidemiological evidence has suggested a role for virus infection in the initiation and/or exacerbation of MS. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease serves as a relevant mouse model for MS. TMEV-infected mice develop a demyelinating disease with clinical symptoms beginning around 35 days after infection, which is associated with development of myelin-specific, PLP(139-151), CD4(+) T cell responses. Viruses have been suggested to initiate autoimmune disease through bystander activation of immune cells or through bystander damage to tissue during infection. We examined the effect of the innate immune response on development of autoimmune demyelinating disease by altering the innate immune response through administration of innate immune cytokines, IFN-alpha or IFN-beta, or antiserum against the type I IFNs during the innate immune response to TMEV. Administration of IFN-beta, but not IFN-alpha, to TMEV- infected mice led to reduced myelin-specific CD4(+) T cell responses and reduced demyelinating disease, which was associated with decreased immune cell infiltration into the CNS and increased expression of IL-10 in the CNS. Conversely, administration of antiserum to IFN-beta led to a more severe demyelinating disease. In addition, administration of poly(I:C), which is an innate immune agonist, to TMEV-infected mice during the innate immune response resulted in decreased myelin-specific CD4(+) T cell responses and reduced demyelinating disease. These results demonstrate that activating or enhancing the innate immune response can reduce the subsequent initiation and progression of the autoimmune response and demyelinating disease.
SUBMITTER: Olson JK
PROVIDER: S-EPMC2876715 | biostudies-literature | 2009 May
REPOSITORIES: biostudies-literature
ACCESS DATA