Unknown

Dataset Information

0

Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies.


ABSTRACT: Nucleotide biosynthesis pathways have been reported to be essential in some protozoan pathogens. Hence, we evaluated the essentiality of one enzyme in the pyrimidine biosynthetic pathway, dihydroorotate dehydrogenase (DHODH) from the eukaryotic parasite Trypanosoma brucei through gene knockdown studies. RNAi knockdown of DHODH expression in bloodstream form T. brucei did not inhibit growth in normal medium, but profoundly retarded growth in pyrimidine-depleted media or in the presence of the known pyrimidine uptake antagonist 5-fluorouracil (5-FU). These results have significant implications for the development of therapeutics to combat T. brucei infection. Specifically, a combination therapy including a T. brucei-specific DHODH inhibitor plus 5-FU may prove to be an effective therapeutic strategy. We also show that this trypanosomal enzyme is inhibited by known inhibitors of bacterial Class 1A DHODH, in distinction to the sensitivity of DHODH from human and other higher eukaryotes. This selectivity is supported by the crystal structure of the T. brucei enzyme, which is reported here at a resolution of 1.95 A. Additional research, guided by the crystal structure described herein, is needed to identify potent inhibitors of T. brucei DHODH.

SUBMITTER: Arakaki TL 

PROVIDER: S-EPMC2877593 | biostudies-literature | 2008 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies.

Arakaki Tracy L TL   Buckner Frederick S FS   Gillespie J Robert JR   Malmquist Nicholas A NA   Phillips Margaret A MA   Kalyuzhniy Oleksandr O   Luft Joseph R JR   Detitta George T GT   Verlinde Christophe L M J CL   Van Voorhis Wesley C WC   Hol Wim G J WG   Merritt Ethan A EA  

Molecular microbiology 20080226 1


Nucleotide biosynthesis pathways have been reported to be essential in some protozoan pathogens. Hence, we evaluated the essentiality of one enzyme in the pyrimidine biosynthetic pathway, dihydroorotate dehydrogenase (DHODH) from the eukaryotic parasite Trypanosoma brucei through gene knockdown studies. RNAi knockdown of DHODH expression in bloodstream form T. brucei did not inhibit growth in normal medium, but profoundly retarded growth in pyrimidine-depleted media or in the presence of the kno  ...[more]

Similar Datasets

| S-EPMC5881531 | biostudies-literature
| S-EPMC1148076 | biostudies-other
| S-EPMC6149853 | biostudies-literature
| S-EPMC2789240 | biostudies-literature
| S-EPMC2855869 | biostudies-other
| S-EPMC4013357 | biostudies-literature
2014-01-21 | E-ERAD-110 | biostudies-arrayexpress
| S-EPMC3728731 | biostudies-literature
| S-EPMC1991314 | biostudies-literature
| S-EPMC2997783 | biostudies-literature