Recurrent tandem gene duplication gave rise to functionally divergent genes in Drosophila.
Ontology highlight
ABSTRACT: Tandem gene duplication is one of the major gene duplication mechanisms in eukaryotes, as illustrated by the prevalence of gene family clusters. Tandem duplicated paralogs usually share the same regulatory element, and as a consequence, they are likely to perform similar biological functions. Here, we provide an example of a newly evolved tandem duplicate acquiring novel functions, which were driven by positive selection. CG32708, CG32706, and CG6999 are 3 clustered genes residing in the X chromosome of Drosophila melanogaster. CG6999 and CG32708 have been examined for their molecular population genetic properties (Thornton and Long 2005). We further investigated the evolutionary forces acting on these genes with greater sample sizes and a broader approach that incorporate between-species divergence, using more variety of statistical methods. We explored the possible functional implications by characterizing the tissue-specific and developmental expression patterns of these genes. Sequence comparison of species within D. melanogaster subgroup reveals that this 3-gene cluster was created by 2 rounds of tandem gene duplication in the last 5 Myr. Based on phylogenetic analysis, CG32708 is clearly the parental copy that is shared by all species. CG32706 appears to have originated in the ancestor of Drosophila simulans and D. melanogaster about 5 Mya, and CG6999 is the newest duplicate that is unique to D. melanogaster. All 3 genes have different expression profiles, and CG6999 has in addition acquired a novel transcript. Biased polymorphism frequency spectrum, linkage disequilibrium, nucleotide substitution, and McDonald-Kreitman analyses suggested that the evolution of CG6999 and CG32706 were driven by positive Darwinian selection.
SUBMITTER: Fan C
PROVIDER: S-EPMC2878002 | biostudies-literature | 2008 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA