Unknown

Dataset Information

0

Evaluation of association of HNF1B variants with diverse cancers: collaborative analysis of data from 19 genome-wide association studies.


ABSTRACT: BACKGROUND:Genome-wide association studies have found type 2 diabetes-associated variants in the HNF1B gene to exhibit reciprocal associations with prostate cancer risk. We aimed to identify whether these variants may have an effect on cancer risk in general versus a specific effect on prostate cancer only. METHODOLOGY/PRINCIPAL FINDINGS:In a collaborative analysis, we collected data from GWAS of cancer phenotypes for the frequently reported variants of HNF1B, rs4430796 and rs7501939, which are in linkage disequilibrium (r(2) = 0.76, HapMap CEU). Overall, the analysis included 16 datasets on rs4430796 with 19,640 cancer cases and 21,929 controls; and 21 datasets on rs7501939 with 26,923 cases and 49,085 controls. Malignancies other than prostate cancer included colorectal, breast, lung and pancreatic cancers, and melanoma. Meta-analysis showed large between-dataset heterogeneity that was driven by different effects in prostate cancer and other cancers. The per-T2D-risk-allele odds ratios (95% confidence intervals) for rs4430796 were 0.79 (0.76, 0.83)] per G allele for prostate cancer (p<10(-15) for both); and 1.03 (0.99, 1.07) for all other cancers. Similarly for rs7501939 the per-T2D-risk-allele odds ratios (95% confidence intervals) were 0.80 (0.77, 0.83) per T allele for prostate cancer (p<10(-15) for both); and 1.00 (0.97, 1.04) for all other cancers. No malignancy other than prostate cancer had a nominally statistically significant association. CONCLUSIONS/SIGNIFICANCE:The examined HNF1B variants have a highly specific effect on prostate cancer risk with no apparent association with any of the other studied cancer types.

SUBMITTER: Elliott KS 

PROVIDER: S-EPMC2878330 | biostudies-literature | 2010 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of association of HNF1B variants with diverse cancers: collaborative analysis of data from 19 genome-wide association studies.

Elliott Katherine S KS   Zeggini Eleftheria E   McCarthy Mark I MI   Gudmundsson Julius J   Sulem Patrick P   Stacey Simon N SN   Thorlacius Steinunn S   Amundadottir Laufey L   Grönberg Henrik H   Xu Jianfeng J   Gaborieau Valerie V   Eeles Rosalind A RA   Neal David E DE   Donovan Jenny L JL   Hamdy Freddie C FC   Muir Kenneth K   Hwang Shih-Jen SJ   Spitz Margaret R MR   Zanke Brent B   Carvajal-Carmona Luis L   Brown Kevin M KM   Hayward Nicholas K NK   Macgregor Stuart S   Tomlinson Ian P M IP   Lemire Mathieu M   Amos Christopher I CI   Murabito Joanne M JM   Isaacs William B WB   Easton Douglas F DF   Brennan Paul P   Barkardottir Rosa B RB   Gudbjartsson Daniel F DF   Rafnar Thorunn T   Hunter David J DJ   Chanock Stephen J SJ   Stefansson Kari K   Ioannidis John P A JP  

PloS one 20100528 5


<h4>Background</h4>Genome-wide association studies have found type 2 diabetes-associated variants in the HNF1B gene to exhibit reciprocal associations with prostate cancer risk. We aimed to identify whether these variants may have an effect on cancer risk in general versus a specific effect on prostate cancer only.<h4>Methodology/principal findings</h4>In a collaborative analysis, we collected data from GWAS of cancer phenotypes for the frequently reported variants of HNF1B, rs4430796 and rs7501  ...[more]

Similar Datasets

| S-EPMC5231365 | biostudies-literature
| S-EPMC10387571 | biostudies-literature
| S-EPMC5740019 | biostudies-literature
| S-EPMC4666492 | biostudies-literature
| S-EPMC7646120 | biostudies-literature
| S-EPMC5536238 | biostudies-literature
| S-EPMC3976694 | biostudies-literature
| S-EPMC5861867 | biostudies-literature
| S-EPMC9753975 | biostudies-literature
| S-EPMC3725885 | biostudies-literature