Unknown

Dataset Information

0

Evaluation of probabilistic and logical inference for a SNP annotation system.


ABSTRACT: Genome wide association studies (GWAS) are an important approach to understanding the genetic mechanisms behind human diseases. Single nucleotide polymorphisms (SNPs) are the predominant markers used in genome wide association studies, and the ability to predict which SNPs are likely to be functional is important for both a priori and a posteriori analyses of GWA studies. This article describes the design, implementation and evaluation of a family of systems for the purpose of identifying SNPs that may cause a change in phenotypic outcomes. The methods described in this article characterize the feasibility of combinations of logical and probabilistic inference with federated data integration for both point and regional SNP annotation and analysis. Evaluations of the methods demonstrate the overall strong predictive value of logical, and logical with probabilistic, inference applied to the domain of SNP annotation.

SUBMITTER: Shen TH 

PROVIDER: S-EPMC2878960 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of probabilistic and logical inference for a SNP annotation system.

Shen Terry H TH   Tarczy-Hornoch Peter P   Detwiler Landon T LT   Cadag Eithon E   Carlson Christopher S CS  

Journal of biomedical informatics 20091214 3


Genome wide association studies (GWAS) are an important approach to understanding the genetic mechanisms behind human diseases. Single nucleotide polymorphisms (SNPs) are the predominant markers used in genome wide association studies, and the ability to predict which SNPs are likely to be functional is important for both a priori and a posteriori analyses of GWA studies. This article describes the design, implementation and evaluation of a family of systems for the purpose of identifying SNPs t  ...[more]

Similar Datasets

| S-EPMC2921378 | biostudies-literature
| S-EPMC2680224 | biostudies-literature
| S-EPMC9910757 | biostudies-literature
| S-EPMC5527101 | biostudies-literature
| S-EPMC3274721 | biostudies-literature
| S-EPMC1090553 | biostudies-literature
| S-EPMC2527138 | biostudies-literature
| S-EPMC3986567 | biostudies-literature
| S-EPMC7327253 | biostudies-literature
| S-EPMC3576916 | biostudies-literature