Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins.
Ontology highlight
ABSTRACT: Ankyrin repeat (AR) proteins are one of the most abundant classes of repeat proteins and are involved in numerous physiological processes. These proteins are composed of various numbers of AR motifs stacked in a nearly linear fashion to adopt an elongated and nonglobular architecture. One salient feature prevalent in such a structural unit is the TPLH tetrapeptide or a close variant, T/SxxH, which initiates the helix-turn-helix conformation and presumably contributes to conformational stability through a hydrogen-bonding network. In the present study, we investigated the roles of T/SxxH motif in the stability, structure, and function of AR proteins by a systematic and rationalized mutagenic study on, followed by biochemical and biophysical characterization of, gankyrin, an oncogenic protein composed of seven ARs and six T/SxxH tetrapeptides, and P16, a tumor suppressor with four ARs but no TPLH tetrapeptide. Our results showed that this tetrapeptide is ineffectual on global structure and function, but contributes significantly to conformational stability when its stabilizing potentials are fully realized in the local conformation, including (1) the intra-AR hydrogen bonding involving the hydroxyl group; (2) the intra-AR and inter-AR hydrogen bonds involving the imidazole ring; and (3) the hydrophobic interaction associated with the Thr-methyl group. Considering that the capping and close-to-capping units tend to have more sequence diversity and more conformational variation, it could be also generally true that a T/SxxH motif close to the terminal repeats contributes little or even negatively to stability with respect to Ala substitution, but substantially stabilizes the global conformation when located in the middle of a long stretch of ARs.
SUBMITTER: Guo Y
PROVIDER: S-EPMC2879631 | biostudies-literature | 2010 May
REPOSITORIES: biostudies-literature
ACCESS DATA