Unknown

Dataset Information

0

New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images.


ABSTRACT:

Objective

Brain tissue segmentation by conventional threshold-based techniques may have limited accuracy and repeatability in older subjects. We present a new multispectral magnetic resonance (MR) image analysis approach for segmenting normal and abnormal brain tissue, including white matter lesions (WMLs).

Methods

We modulated two 1.5T MR sequences in the red/green colour space and calculated the tissue volumes using minimum variance quantisation. We tested it on 14 subjects, mean age 73.3 +/- 10 years, representing the full range of WMLs and atrophy. We compared the results of WML segmentation with those using FLAIR-derived thresholds, examined the effect of sampling location, WML amount and field inhomogeneities, and tested observer reliability and accuracy.

Results

FLAIR-derived thresholds were significantly affected by the location used to derive the threshold (P = 0.0004) and by WML volume (P = 0.0003), and had higher intra-rater variability than the multispectral technique (mean difference +/- SD: 759 +/- 733 versus 69 +/- 326 voxels respectively). The multispectral technique misclassified 16 times fewer WMLs.

Conclusion

Initial testing suggests that the multispectral technique is highly reproducible and accurate with the potential to be applied to routinely collected clinical MRI data.

SUBMITTER: Hernandez Mdel C 

PROVIDER: S-EPMC2882045 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images.

Hernández Maria del C Valdés Mdel C   Ferguson Karen J KJ   Chappell Francesca M FM   Wardlaw Joanna M JM  

European radiology 20100216 7


<h4>Objective</h4>Brain tissue segmentation by conventional threshold-based techniques may have limited accuracy and repeatability in older subjects. We present a new multispectral magnetic resonance (MR) image analysis approach for segmenting normal and abnormal brain tissue, including white matter lesions (WMLs).<h4>Methods</h4>We modulated two 1.5T MR sequences in the red/green colour space and calculated the tissue volumes using minimum variance quantisation. We tested it on 14 subjects, mea  ...[more]

Similar Datasets

| S-EPMC2905619 | biostudies-literature
| S-EPMC5099118 | biostudies-literature
| S-EPMC4667087 | biostudies-literature
| S-EPMC9088496 | biostudies-literature
2004-01-01 | GSE754 | GEO
| S-EPMC9633994 | biostudies-literature
| S-EPMC6996003 | biostudies-literature
| S-EPMC4038900 | biostudies-literature
| S-EPMC9864320 | biostudies-literature
2004-01-01 | GSE753 | GEO