Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress.
Ontology highlight
ABSTRACT: We have addressed the role of the F-box helicase 1 (Fbh1) protein during genome maintenance in mammalian cells. For this, we generated two mouse embryonic stem cell lines deficient for Fbh1: one with a homozygous deletion of the N-terminal F-box domain (Fbh1(f/f)), and the other with a homozygous disruption (Fbh1(-/-)). Consistent with previous reports of Fbh1-deficiency in vertebrate cells, we found that Fbh1(-/-) cells show a moderate increase in Rad51 localization to DNA damage, but no clear defect in chromosome break repair. In contrast, we found that Fbh1(f/f) cells show a decrease in Rad51 localization to DNA damage and increased cytoplasmic localization of Rad51. However, these Fbh1(f/f) cells show no clear defects in chromosome break repair. Since some Rad51 partners and F-box-associated proteins (Skp1-Cul1) have been implicated in progression through mitosis, we considered whether Fbh1 might play a role in this process. To test this hypothesis, we disrupted mitosis using catalytic topoisomerase II inhibitors (bisdioxopiperazines), which inhibit chromosome decatenation. We found that both Fbh1(f/f) and Fbh1(-/-) cells show hypersensitivity to topoisomerase II catalytic inhibitors, even though the degree of decatenation stress was not affected. Furthermore, following topoisomerase II catalytic inhibition, both Fbh1-deficient cell lines show substantial defects in anaphase separation of chromosomes. These results indicate that Fbh1 is important for restoration of normal mitotic progression following decatenation stress.
SUBMITTER: Laulier C
PROVIDER: S-EPMC2883650 | biostudies-literature | 2010 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA