Induction of the small heat shock protein alphaB-crystallin by genotoxic stress is mediated by p53 and p73.
Ontology highlight
ABSTRACT: The small heat shock protein alphaB-crystallin is a molecular chaperone that is induced by stress and protects cells by inhibiting protein aggregation and apoptosis. To identify novel transcriptional regulators of the alphaB-crystallin gene, we examined the alphaB-crystallin promoter for conserved transcription factor DNA-binding elements and identified a putative response element for the p53 tumor suppressor protein. Ectopic expression of wild-type p53 induced alphaB-crystallin mRNA and protein with delayed kinetics compared to p21. Additionally, the induction of alphaB-crystallin by genotoxic stress was inhibited by siRNAs targeting p53. Although the p53-dependent transactivation of an alphaB-crystallin promoter luciferase reporter required the putative p53RE, chromatin immunoprecipitation failed to detect p53 binding to the alphaB-crystallin promoter. These results suggested an indirect mechanism of transactivation involving p53 family members p63 or p73. DeltaNp73 was dramatically induced by p53 in a TAp73-dependent manner, and silencing p73 suppressed the transcriptional activation of alphaB-crystallin by p53. Moreover, ectopic expression of DeltaNp73alpha (but not other p73 isoforms) increased alphaB-crystallin mRNA levels in the absence of p53. Collectively, our results link the molecular chaperone alphaB-crystallin to the cellular genotoxic stress response via a novel mechanism of transcriptional regulation by p53 and p73.
SUBMITTER: Evans JR
PROVIDER: S-EPMC2883682 | biostudies-literature | 2010 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA