Unknown

Dataset Information

0

Reagents for astatination of biomolecules. 4. Comparison of maleimido-closo-decaborate(2-) and meta-[(211)At]astatobenzoate conjugates for labeling anti-CD45 antibodies with [(211)At]astatine.


ABSTRACT: An investigation was conducted to compare the in vivo tissue distribution of a rat antimurine CD45 monoclonal antibody (30F11) and an irrelevant mAbs (CA12.10C12) labeled with (211)At using two different labeling methods. In the investigation, the mAbs were also labeled with (125)I to assess the in vivo stability of the labeling methods toward deastatination. One labeling method employed N-hydroxysuccinimidyl meta-[(211)At]astatobenzoate, [(211)At]1c, and N-hydroxysuccinimidyl meta-[(125)I]iodobenzoate, [(125)I]1b, in conjugation reactions to obtain the radiolabeled mAbs. The other labeling method involved conjugation of a maleimido-closo-decaborate(2-) derivative, 2, with sulfhydryl groups on the mAbs, followed by labeling of the mAb-2 conjugates using Na[(211)At]At or Na[(125)I]I and chloramine-T. Concentrations of the (211)At/(125)I pair of radiolabeled mAbs in selected tissues were examined in BALB/c mice at 1, 4, and 24 h post injection (pi). The co-injected anti-CD45 mAb, 30F11, labeled with [(125)I]1b and [(211)At]1c targeted the CD45-bearing cells in the spleen with the percent injected dose (%ID) of (125)I in that tissue being 13.31 ± 0.78; 17.43 ± 2.56; 5.23 ± 0.50; and (211)At being 6.56 ± 0.40; 10.14 ± 1.49; 7.52 ± 0.79 at 1, 4, and 24 h pi (respectively). However, better targeting (or retention) of the (125)I and (211)At was obtained for 30F11 conjugated with the closo-decaborate(2-), 2. The %ID in the spleen of (125)I (i.e., [(125)I]30F11-2) being 21.15 ± 1.33; 22.22 ± 1.95; 12.41 ± 0.75; and (211)At (i.e., [(211)At]30F11-2) being 22.78 ± 1.29; 25.05 ± 2.35; 17.30 ± 1.20 at 1, 4, and 24 h pi (respectively). In contrast, the irrelevant mAb, CA12.10C12, labeled with (125)I or (211)At by either method had less than 0.8% ID in the spleen at any time point, except for [(211)At]CA12.10C12-1c, which had 1.62 ± 0.14%ID and 1.21 ± 0.08%ID at 1 and 4 h pi. The higher spleen concentrations in that conjugate appear to be due to in vivo deastatination. Differences in (125)I and (211)At concentrations in lung, neck, and stomach indicate that the meta-[(211)At]benzoyl conjugates underwent deastatination, whereas the (211)At-labeled closo-decaborate(2-) conjugates were very stable to in vivo deastatination. In summary, using the closo-decaborate(2-) (211)At labeling approach resulted in higher concentrations of (211)At in target tissue (spleen) and higher stability to in vivo deastatination in this model. These findings, along with the simpler and higher-yielding (211)At-labeling method, provide the basis for using the closo-decaborate(2-) labeling reagent, 2, in our continued studies of the application of (211)At-labeled mAbs for conditioning in hematopoietic cell transplantation.

SUBMITTER: Wilbur DS 

PROVIDER: S-EPMC2888658 | biostudies-literature | 2009 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reagents for astatination of biomolecules. 4. Comparison of maleimido-closo-decaborate(2-) and meta-[(211)At]astatobenzoate conjugates for labeling anti-CD45 antibodies with [(211)At]astatine.

Wilbur D Scott DS   Thakar Monica S MS   Hamlin Donald K DK   Santos Erlinda B EB   Chyan Ming-Kuan MK   Nakamae Hirohisa H   Pagel John M JM   Press Oliver W OW   Sandmaier Brenda M BM  

Bioconjugate chemistry 20090904 10


An investigation was conducted to compare the in vivo tissue distribution of a rat antimurine CD45 monoclonal antibody (30F11) and an irrelevant mAbs (CA12.10C12) labeled with (211)At using two different labeling methods. In the investigation, the mAbs were also labeled with (125)I to assess the in vivo stability of the labeling methods toward deastatination. One labeling method employed N-hydroxysuccinimidyl meta-[(211)At]astatobenzoate, [(211)At]1c, and N-hydroxysuccinimidyl meta-[(125)I]iodob  ...[more]

Similar Datasets

| S-EPMC2668518 | biostudies-literature
| S-EPMC3116028 | biostudies-literature
| S-EPMC3310299 | biostudies-literature
| S-EPMC7606587 | biostudies-literature
| S-EPMC5451414 | biostudies-literature
| S-EPMC6193629 | biostudies-literature
| S-EPMC9859440 | biostudies-literature
| S-EPMC7796516 | biostudies-literature
| S-EPMC6813637 | biostudies-literature
| S-EPMC8317303 | biostudies-literature