Unknown

Dataset Information

0

Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems.


ABSTRACT: RNA molecules perform diverse regulatory functions in natural biological systems, and numerous synthetic RNA-based control devices that integrate sensing and gene-regulatory functions have been demonstrated, predominantly in bacteria and yeast. Despite potential advantages of RNA-based genetic control strategies in clinical applications, there has been limited success in extending engineered RNA devices to mammalian gene-expression control and no example of their application to functional response regulation in mammalian systems. Here we describe a synthetic RNA-based regulatory system and its application in advancing cellular therapies by linking rationally designed, drug-responsive, ribozyme-based regulatory devices to growth cytokine targets to control mouse and primary human T-cell proliferation. We further demonstrate the ability of our synthetic controllers to effectively modulate T-cell growth rate in response to drug input in vivo. Our RNA-based regulatory system exhibits unique properties critical for translation to therapeutic applications, including adaptability to diverse ligand inputs and regulatory targets, tunable regulatory stringency, and rapid response to input availability. By providing tight gene-expression control with customizable ligand inputs, RNA-based regulatory systems can greatly improve cellular therapies and advance broad applications in health and medicine.

SUBMITTER: Chen YY 

PROVIDER: S-EPMC2889348 | biostudies-literature | 2010 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems.

Chen Yvonne Y YY   Jensen Michael C MC   Smolke Christina D CD  

Proceedings of the National Academy of Sciences of the United States of America 20100426 19


RNA molecules perform diverse regulatory functions in natural biological systems, and numerous synthetic RNA-based control devices that integrate sensing and gene-regulatory functions have been demonstrated, predominantly in bacteria and yeast. Despite potential advantages of RNA-based genetic control strategies in clinical applications, there has been limited success in extending engineered RNA devices to mammalian gene-expression control and no example of their application to functional respon  ...[more]

Similar Datasets

| S-EPMC6182142 | biostudies-literature
| S-EPMC4874428 | biostudies-other
| S-EPMC3120087 | biostudies-other
| S-EPMC6242901 | biostudies-literature
| S-EPMC2832492 | biostudies-literature
| S-EPMC4532950 | biostudies-literature
| S-EPMC4824083 | biostudies-other
| S-EPMC5805373 | biostudies-literature
| S-EPMC10234631 | biostudies-literature
| S-EPMC9648154 | biostudies-literature