Unknown

Dataset Information

0

MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling.


ABSTRACT: microRNAs are thought to regulate tumor progression and invasion via direct interaction with target genes within cells. Here the microRNA17/20 cluster is shown to govern cellular migration and invasion of nearby cells via heterotypic secreted signals. microRNA17/20 abundance is reduced in highly invasive breast cancer cell lines and node-positive breast cancer specimens. Cell-conditioned medium from microRNA17/20-overexpressing noninvasive breast cancer cell MCF7 was sufficient to inhibit MDA-MB-231 cell migration and invasion through inhibiting secretion of a subset of cytokines, and suppressing plasminogen activation via inhibition of the secreted plasminogen activators (cytokeratin 8 and alpha-enolase). microRNA17/20 directly repressed IL-8 by targeting its 3' UTR, and inhibited cytokeratin 8 via the cell cycle control protein cyclin D1. At variance with prior studies, these results demonstrated a unique mechanism of how the altered microRNA17/20 expression regulates cellular secretion and tumor microenvironment to control migration and invasion of neighboring cells in breast cancer. These findings not only reveal an antiinvasive function of miR-17/20 in breast cancer, but also identify a heterotypic secreted signal that mediates the microRNA regulation of tumor metastasis.

SUBMITTER: Yu Z 

PROVIDER: S-EPMC2889540 | biostudies-literature | 2010 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling.

Yu Zuoren Z   Willmarth Nicole E NE   Zhou Jie J   Katiyar Sanjay S   Wang Min M   Liu Yang Y   McCue Peter A PA   Quong Andrew A AA   Lisanti Michael P MP   Pestell Richard G RG  

Proceedings of the National Academy of Sciences of the United States of America 20100420 18


microRNAs are thought to regulate tumor progression and invasion via direct interaction with target genes within cells. Here the microRNA17/20 cluster is shown to govern cellular migration and invasion of nearby cells via heterotypic secreted signals. microRNA17/20 abundance is reduced in highly invasive breast cancer cell lines and node-positive breast cancer specimens. Cell-conditioned medium from microRNA17/20-overexpressing noninvasive breast cancer cell MCF7 was sufficient to inhibit MDA-MB  ...[more]

Similar Datasets

| S-EPMC5530218 | biostudies-other
| S-EPMC3078939 | biostudies-literature
| S-EPMC7136920 | biostudies-literature
| S-EPMC4668367 | biostudies-literature
| S-EPMC5122415 | biostudies-literature
| S-EPMC5530176 | biostudies-other
| S-EPMC9611734 | biostudies-literature
| S-EPMC2766609 | biostudies-literature
| S-EPMC5771825 | biostudies-literature
| S-EPMC3865809 | biostudies-literature