Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia.
Ontology highlight
ABSTRACT: The Drosophila optic lobe develops from neuroepithelial cells, which function as symmetrically dividing neural progenitors. We describe here a role for the Fat-Hippo pathway in controlling the growth and differentiation of Drosophila optic neuroepithelia. Mutation of tumor suppressor genes within the pathway, or expression of activated Yorkie, promotes overgrowth of neuroepithelial cells and delays or blocks their differentiation; mutation of yorkie inhibits growth and accelerates differentiation. Neuroblasts and other neural cells, by contrast, appear unaffected by Yorkie activation. Neuroepithelial cells undergo a cell cycle arrest before converting to neuroblasts; this cell cycle arrest is regulated by Fat-Hippo signaling. Combinations of cell cycle regulators, including E2f1 and CyclinD, delay neuroepithelial differentiation, and Fat-Hippo signaling delays differentiation in part through E2f1. We also characterize roles for Jak-Stat and Notch signaling. Our studies establish that the progression of neuroepithelial cells to neuroblasts is regulated by Notch signaling, and suggest a model in which Fat-Hippo and Jak-Stat signaling influence differentiation by their acceleration of cell cycle progression and consequent impairment of Delta accumulation, thereby modulating Notch signaling. This characterization of Fat-Hippo signaling in neuroepithelial growth and differentiation also provides insights into the potential roles of Yes-associated protein in vertebrate neural development and medullablastoma.
SUBMITTER: Reddy BV
PROVIDER: S-EPMC2889606 | biostudies-literature | 2010 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA