Unknown

Dataset Information

0

Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma.


ABSTRACT: Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-gamma-D-glutamic acid capsule. Atx is comprised of three proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT can assemble on host cell surfaces or extracellularly in plasma. We show that, under physiological conditions in bovine plasma, LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel-forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration, which allows them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that could circulate freely in the blood.

SUBMITTER: Kintzer AF 

PROVIDER: S-EPMC2892534 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma.

Kintzer Alexander F AF   Sterling Harry J HJ   Tang Iok I II   Abdul-Gader Ali A   Miles Andrew J AJ   Wallace B A BA   Williams Evan R ER   Krantz Bryan A BA  

Journal of molecular biology 20100428 5


Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-gamma-D-glutamic acid capsule. Atx is comprised of three proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of LF and/or EF, producing lethal toxin (  ...[more]

Similar Datasets

| S-EPMC1986636 | biostudies-literature
| S-EPMC1307059 | biostudies-literature
| S-EPMC2891133 | biostudies-literature
| S-EPMC3249527 | biostudies-literature
| S-EPMC5666345 | biostudies-literature
| S-EPMC7012834 | biostudies-literature
| S-EPMC1808072 | biostudies-literature
| S-EPMC7458312 | biostudies-literature
| S-EPMC4519040 | biostudies-literature
| S-EPMC4179592 | biostudies-literature